Assessment of children with CFLD by means of ARFI elastography yields adequate results when compared to conventional US. For detection of early stages of liver disease with mild fibrotic reactions of hepatic tissue, ARFI elastography might offer diagnostic advantages over conventional US. Thus, liver stiffness measured by means of elastography might represent a valuable biological parameter for evaluation and follow-up of CFLD.
Since Broca's time (1824-1880), ossification of the neurocranial sutures has been used as a characteristic of age. Current approaches include the visual macroscopic examination of ecto and endocranial sutures. The evaluation of the cross-section of sutures usually necessitates the destruction of the neurocranium. In a nondestructive alternative approach that was tested within the context of the "Digital Forensic Osteology" project that ran in cooperation with the Virtopsy-Project, it emerged that the resolution of conventional multi-slice computed tomography data sets was not high enough to image sutures. Thus for the experiments presented here, the eXplore Locus Ultra flat-panel computed tomography scanner from GE Healthcare was used. Calottes were scanned during autopsy and then immediately returned to the corpse. So far, the skullcaps of 221 individuals have been scanned. The cross-sections of 14 suture segments could be assessed for seven previously defined stages of ossification. In a converse step, the 14 highest and lowest age estimate values corresponding to the individual stages of suture closure found were estimated for each calotte. The obtained ranges narrowing down the age estimate were evaluated with statistics. A mean value of 43.31 years for the range of narrowed age estimates shows that this method can be a useful aid in estimating age. The results of intra- and inter-observer tests showed good overall agreement between the findings of three observers. This method is suitable for a nondestructive age estimation and can be used for the entire calotte.
!Cardiac magnetic resonance imaging (CMRI) is a versatile diagnostic tool. One of its main advantages is the possibility of tissue characterization. T1-weighted images for scar and T2-weighted images for edema visualization are key methods for tissue characterization. Otherwise these sequences are strongly limited for the detection of diffuse myocardial pathologies. Recently, rapid technical innovations have generated new techniques. T1, T2 mapping and evaluation of the extracellular volume fraction (ECV) allow quantification of diffuse myocardial pathologies and showed great potential in the visualization of fibrosis, edema, amyloid, iron overload and lipid. In the future these techniques might enable the detection of early cardiac involvement, even act as a prognosticator. Moreover, therapy monitoring and follow-up might be possible due to versatile parameter quantification with these new techniques. Key points:▶ CMR allows for tissue characterization via T1-and T2-weighted sequences.▶ In cases of diffuse, global myocardial pathologies, correct image interpretation with traditional CMR sequences might be difficult.▶ T1, T2 mapping and ECV can quantify diffuse, global myocardial pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.