A two‐component core–shell UiO‐68 type metal–organic framework (MOF) with a nonfunctionalized interior for efficient guest uptake and storage and a thin light‐responsive outer shell was prepared by initial solvothermal MOF synthesis followed by solvent‐assisted linker exchange. The bulky shell linker features two tetra‐ortho‐fluorinated azobenzene moieties to exploit their advantageous photoisomerization properties. The obtained perfect octahedral MOF single crystals can be switched repeatedly and with an unprecedented efficiency between E‐ and Z‐rich states using visible light only. Due to the high photoswitch density per pore of the shell layer, its steric demand and thus molecular uptake (and release) can be conveniently modulated upon green and blue light irradiation. Therefore, the “smart” shell acts as a light‐controlled kinetic barrier or “gate” for the diffusion of cargo molecules in and out of the MOF crystals.
To arrive to sustainable hydrogen‐based energy solutions, the understanding of water‐splitting catalysts plays the most crucial role. Herein, state‐of‐the‐art hypotheses are combined on electrocatalytic active metal sites toward the oxygen evolution reaction (OER) to develop a highly efficient catalyst based on Earth‐abundant cobalt and zinc oxides. The precursor catalyst Zn0.35Co0.65O is synthesized via a fast microwave‐assisted approach at low temperatures. Subsequently, it transforms in situ from the wurtzite structure to the layered γ‐Co(O)OH, while most of its zinc leaches out. This material shows outstanding catalytic performance and stability toward the OER in 1 m KOH (overpotential at 10 mA cm−2 ηinitial = 306 mV, η98 h = 318 mV). By comparing the electrochemical results and ex situ analyses to today's literature, clear structure‐activity correlations are able to be identified. The findings suggest that coordinately unsaturated cobalt octahedra on the surface are indeed the active centers for the OER.
We investigated the growth of β-phase NaYF4:Yb3+,Er3+ upconversion nanoparticles synthesized by the thermal decomposition method using a combination of in situ and offline analytical methods for determining the application-relevant optical properties, size, crystal phase, and chemical composition. This included in situ steady state luminescence in combination with offline time-resolved luminescence spectroscopy as well as small-angle X-ray scattering (SAXS) transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and inductively coupled plasma optical emission spectrometry (ICP-OES). For assessing the suitability of our optical monitoring approach, the in situ-collected spectroscopic data, which reveal the luminescence evolution during nanocrystal synthesis, were compared to measurements done after cooling of the reaction mixture of the as-synthesized particles. The excellent correlation of the in situ and time-resolved upconversion luminescence with the nanoparticle sizes determined during the course of the reaction provides important insights into the various stages of nanoparticle growth. This study highlights the capability of in situ luminescence monitoring to control the efficiency of UCNP synthesis, particularly the reaction times at elevated temperatures and the particle quality in terms of size, shape, and crystal structure, as well as luminescence lifetime and upconversion quantum yield.
A novel self-terminating chemical approach for the deposition of WS 2 by atomic layer deposition based on chemisorption of bis(t-butylimino)bis-(dimethylamino)tungsten(VI) followed by sulfurization by H 2 S is reported. A broad spectrum of reaction parameters including temperatures of the reaction chamber and the precursor and durations of every atomic layer deposition (ALD) step are investigated and optimized to reach a high growth per cycle of 1.7 Å and a high quality of the deposited thin films. The self-terminating behavior of this reaction is determined by the variation of the dose of the precursors. Surface-and bulk-sensitive techniques prove that highly pure and well-defined WS 2 layers can be synthesized by ALD. Imaging methods show that WS 2 grows as platelets with a thickness of 6−10 nm and diameter of 30 nm, which do not vary dramatically with the number of ALD cycles. A low deposition temperature process followed by a postannealing under H 2 S is also investigated to produce a conformal WS 2 film. Finally, a reaction mechanism could be proposed by studying the chemisorption of bis(t-butylimino)bis(dimethylamino)tungsten(VI) onto silica and the thermal and chemical reactivities of chemisorbed species by small-molecule analyses.
We present the design and characterization of a microfluidic bubble generator that has the potential of producing monodisperse bubbles in 256 production channels that can operate in parallel. For a single production channel we demonstrate a production rate of up to 4 kHz with a coefficient of variation of less than 1%. We observe a two-stage bubble production mechanism: initially the gas spreads onto a shallow terrace, and then overflows into a larger foam collection channel; pinning of the liquid-gas meniscus is observed at the terrace edge, the result being an asymmetric pinch-off. A semiempirical physical model predicts the scaling of bubble size with fluid viscosity and gas pressure from measurements of the pinned meniscus width.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.