Glutamate metabolism plays a vital role in biosynthesis of nucleic acids and proteins. It is also associated with a number of different stress responses. Deficiency of enzymes involved in glutamate metabolism is associated with various disorders including gyrate atrophy, hyperammonemia, hemolytic anemia, γ-hydoxybutyric aciduria and 5-oxoprolinuria. Here, we present a pathway map of glutamate metabolism representing metabolic intermediates in the pathway, 107 regulator molecules, 9 interactors and 3 types of post-translational modifications. This pathway map provides detailed information about enzyme regulation, protein-enzyme interactions, post-translational modifications of enzymes and disorders due to enzyme deficiency. The information included in the map was based on published experimental evidence reported from mammalian systems.
Here, we present an update on the next level of experiments studying the impact of the gamma radiation environment, created post-March, 2011 nuclear accident at Fukushima Daiichi nuclear power plant, on rice plant and its next generation-the seed. Japonica-type rice (Oryza sativa L. cv. Koshihikari) plant was exposed to low-level gamma radiation (~4 μSv/h) in the contaminated Iitate Farm field in Iitate village (Fukushima). Seeds were harvested from these plants at maturity, and serve as the treated group. For control group, seeds (cv. Koshihikari) were harvested from rice grown in clean soil in Soma city, adjacent to Iitate village, in Fukushima. Focusing on the multi-omics approach, we have investigated the dry mature rice seed transcriptome, proteome, and metabolome following cultivation of rice in the radionuclide contaminated soil and compared it with the control group seed (non-radioactive field-soil environment). This update article presents an overview of both the multi-omics approach/technologies and the first findings on how rice seed has changed or adapted its biology to the low-level radioactive environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.