Amyloids are aggregated proteins characterized by a specific cross-β-sheet structure and are typically associated with neurodegenerative diseases including Alzheimer's disease. Recently, however, several nonpathological amyloids have been found in intracellular organelles of normal mammalian tissues suggesting that amyloid may also carry out biological functions. We previously have shown that the epididymal cystatin CRES (cystatin-related epididymal spermatogenic), cst8, a reproductive-specific member of the cystatin superfamily of cysteine protease inhibitors, forms amyloid in vitro suggesting that CRES amyloid may also form in vivo within the epididymal lumen. Here we show that amyloid structures containing CRES are a component of the normal mouse epididymal lumen without any apparent cytotoxic effects on spermatozoa and that these structures change along the length of the tubule. These studies suggest the presence of a functional amyloid structure that may carry out roles in sperm maturation or maintenance of the luminal milieu and which itself may undergo maturational changes along the epididymis. In contrast to previous examples of functional amyloid which were intracellular, our studies now show that nonpathological/functional amyloid can also be extracellular. The presence of an extracellular and nonpathological amyloid in the epididymis suggests that similar amyloid structures may be present in other organ systems and may carry out distinctive tissue-specific functions.
STUDY QUESTION: Do the CRES (cystatin-related epididymal spermatogenic) subgroup members, including CRES2, CRES3 and cystatin E2, contribute to the formation of a nonpathological, functional amyloid matrix in the mouse epididymal lumen?SUMMARY ANSWER: CRES2, CRES3 and cystatin E2 self-assemble with different aggregation properties into amyloids in vitro, are part of a common amyloid matrix in the mouse epididymal lumen and are present in extracellular vesicles.WHAT IS KNOWN ALREADY: Although previously thought only to be pathological, accumulating evidence has established that amyloids, which are highly ordered protein aggregates, can also carry out functional roles in the absence of pathology. We previously demonstrated that nonpathological amyloids are present in the epididymis; specifically, that the reproductive cystatin CRES forms amyloid and is present in the mouse epididymal lumen in a film-like amyloid matrix that is intimately associated with spermatozoa. Because the related proteins CRES2, CRES3 and cystatin E2 are also expressed in the epididymis, the present studies were carried out to determine if these proteins are also amyloidogenic in vitro and in vivo and thus may coordinately function with CRES as an amyloid structure. STUDY DESIGN, SAMPLES/MATERIALS, METHODS:The epididymides from CD1 and Cst8 (CRES)129SvEv/B6 gene knockout (KO) and wild-type mice and antibodies that specifically recognize each CRES subgroup member were used for immunohistochemical and biochemical analyzes of CRES subgroup proteins. Methods classically used to identify amyloid, including the conformation-dependent dyes thioflavin S (ThS) and thioflavin T (ThT), conformation-dependent antibodies, protein aggregation disease ligand (which binds any amyloid independent of sequence) and negative stain electron microscopy (EM) were carried out to examine the amyloidogenic properties of CRES subgroup members. Immunofluorescence analysis and confocal microscopy were used for colocalization studies. MAIN RESULTS AND THE ROLE OF CHANCE:Immunoblot and immunofluorescence analyzes showed that CRES2, CRES3 and cystatin E2 were primarily found in the initial segment and intermediate zone of the epididymis and were profoundly downregulated in epididymides from CRES KO mice, suggesting integrated functions. Except for CRES3, which was only detected in a particulate form, proteins were present in the epididymal lumen in both soluble and particulate forms including in a film-like matrix and in extracellular vesicles. The use of amyloid-specific reagents determined that all CRES subgroup members were present as amyloids and colocalized to a common amyloid matrix present in the epididymal lumen. Negative stain EM, dot blot analysis and ThT plate assays showed that recombinant CRES2, CRES3 and cystatin E2 formed amyloid in vitro, albeit with different aggregation properties. Together, our studies demonstrate that a unique amyloid matrix composed of the CRES family of reproductive-specific cystatins and cystatin C is a normal component of the mouse ...
CRES (cystatin-related epididymal spermatogenic), a member of the cystatin superfamily of cysteine protease inhibitors, is expressed in the epididymis and spermatozoa, suggesting specialized roles in reproduction. Several cystatin family members oligomerize, including cystatin C that forms amyloid deposits associated with cerebral amyloid angiopathy. Our studies demonstrate that CRES also forms oligomers. Size exclusion chromatography revealed the presence of multiple forms of CRES in the epididymal luminal fluid, including SDS-sensitive and SDSresistant high molecular mass complexes. In vitro experiments demonstrated that CRES is a substrate for transglutaminase and that an endogenous transglutaminase activity in the epididymal lumen catalyzed the formation of SDS-resistant CRES complexes. The use of a conformation-dependent antibody that recognizes only the oligomeric precursors to amyloid, negative stain electron microscopy, and Congo Red staining showed that CRES adopted similar oligomeric and fibrillar structures during its aggregation as other amyloidogenic proteins, suggesting that CRES has the potential to form amyloid in the epididymal lumen. The addition of transglutaminase, however, prevented the formation of CRES oligomers recognized by the conformation antibody by cross-linking CRES into an amorphous structure. We propose that transglutaminase activity in the epididymal lumen may function as a mechanism of extracellular quality control by diverting proteins such as CRES from the amyloidogenic pathway.As spermatozoa migrate through the long convoluted tubule known as the epididymis, they undergo maturation and acquire motility and fertility. Since sperm are synthetically inactive, the maturation process requires the interaction of sperm with proteins that are synthesized and secreted in a region-dependent manner by the epididymal epithelium. Following secretion, the fate of proteins in the epididymal lumen is varied. Some proteins bind to sperm and presumably affect sperm function directly, whereas others remain in the lumen throughout the length of the tubule (1, 2). Other proteins are present in the epididymal lumen for only a short time, suggesting that their continued presence may be detrimental to sperm maturation and/or epididymal cell functions, and thus selective mechanisms are in place for their removal.CRES is the defining member of a reproductive subgroup of family 2 cystatins within the cystatin superfamily of cysteine protease inhibitors (MEROPS classification subfamily I25B) (3, 4). CRES is synthesized and secreted into the lumen by the epithelial cells in the most proximal part of the epididymis and then abruptly disappears from the lumen a short time later (5). In vitro CRES does not inhibit cysteine proteases but rather inhibited the serine protease prohormone convertase 2, suggesting an intracellular rather than an extracellular role for CRES (6). Although a function of CRES within the secretory pathway of the epididymal epithelial cells would make it dispensable once it was secrete...
Background: The L68Q variant of cystatin C is highly amyloidogenic forming aggregates in individuals with HCCAA. Results: Spermatozoa from mice expressing human L68Q cystatin C exhibit fertility defects and increased levels of amyloid. Conclusion: L68Q epididymal fluid containing cystatin C amyloid is harmful for sperm function. Significance: Amyloid in the reproductive tract may contribute to male factor infertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.