Acute myeloid leukemia (AML) is the most common acute leukemia amongst adults with a 5-year overall survival lower than 30%. Emerging evidence suggest that immune alterations favor leukemogenesis and/or AML relapse thereby negatively impacting disease outcome. Over the last years myeloid derived suppressor cells (MDSCs) have been gaining momentum in the field of cancer research. MDSCs are a heterogeneous cell population morphologically resembling either monocytes or granulocytes and sharing some key features including myeloid origin, aberrant (immature) phenotype, and immunosuppressive activity. Increasing evidence suggests that accumulating MDSCs are involved in hampering anti-tumor immune responses and immune-based therapies. Here, we demonstrate increased frequencies of CD14+ monocytic MDSCs in newly diagnosed AML that co-express CD33 but lack HLA-DR (HLA-DRlo). AML-blasts induce HLA-DRlo cells from healthy donor-derived monocytes in vitro that suppress T-cells and express indoleamine-2,3-dioxygenase (IDO). We investigated whether a CD33/CD3-bispecific BiTE® antibody construct (AMG 330) with pre-clinical activity against AML-blasts by redirection of T-cells can eradicate CD33+ MDSCs. In fact, T-cells eliminate IDO+CD33+ MDSCs in the presence of AMG 330. Depletion of total CD14+ cells (including MDSCs) in peripheral blood mononuclear cells from AML patients did not enhance AMG 330-triggered T-cell activation and expansion, but boosted AML-blast lysis. This finding was corroborated in experiments showing that adding MDSCs into co-cultures of T- and AML-cells reduced AML-blast killing, while IDO inhibition promotes AMG 330-mediated clearance of AML-blasts. Taken together, our results suggest that AMG 330 may achieve anti-leukemic efficacy not only through T-cell-mediated cytotoxicity against AML-blasts but also against CD33+ MDSCs, suggesting that it is worth exploring the predictive role of MDSCs for responsiveness towards an AMG 330-based therapy.Electronic supplementary materialThe online version of this article (10.1186/s40425-018-0432-9) contains supplementary material, which is available to authorized users.
Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system.
Acute myeloid leukemia (AML) represents the most common acute leukemia among adults. Despite recent progress in diagnosis and treatment, long-term outcome remains unsatisfactory. The success of allogeneic stem cell transplantation underscores the immunoresponsive nature of AML, creating the basis for further exploiting immunotherapies. However, emerging evidence suggests that AML, similar to other malignant entities, employs a variety of mechanisms to evade immunosurveillance. In light of this, T-cell inhibitory myeloid-derived suppressor cells (MDSC) are gaining interest as key facilitators of immunoescape. Accumulation of CD14 þ HLA-DR low monocytic MDSCs has been described in newly diagnosed AML patients, and deciphering the underlying mechanisms could help to improve anti-AML immunity. Here, we report that conventional monocytes readily takeup AML-derived extracellular vesicles (EV) and subsequently undergo MDSC differentiation. They acquired an CD14 þ HLA-DR low phenotype, expressed the immunomodulatory indoleamine-2,3-dioxygenase, and upregulated expression of genes characteristic for MDSCs, such as S100A8/9 and cEBPb. The Akt/ mTOR pathway played a critical role in the AML-EV-induced phenotypical and functional transition of monocytes. Generated MDSCs displayed a glycolytic switch, which rendered them more susceptible toward glycolytic inhibitors. Furthermore, palmitoylated proteins on the AML-EV surface activated Toll-like receptor 2 as the initiating event of Akt/mTOR-dependent induction of MDSC. Therefore, targeting protein palmitoylation in AML blasts could block MDSC accumulation to improve immune responses.Significance: These findings indicate that targeting protein palmitoylation in AML could interfere with the leukemogenic potential and block MDSC accumulation to improve immunity.
There is an urgent need for more efficient treatment of chronic wounds in diabetic patients especially with a high risk of leg amputation. Biomaterials capable of presenting extracellular matrix-mimetic signals may assist in the recovery of diabetic wounds by creating a more conducive environment for blood vessel formation and modulating the immune system. In a previous study, we showed that glycosaminoglycan-mimetic peptide nanofibers are able to increase the rate of closure in STZ-induced diabetic rats by induction of angiogenesis. The present study investigates the effect of a heparin-mimetic peptide amphiphile (PA) nanofiber gel on full-thickness excisional wounds in a db/db diabetic mouse model, with emphasis on the ability of the PA nanofiber network to regulate angiogenesis and the expression of pro-inflammatory cytokines. Here, we showed that the heparin-mimetic PA gel can support tissue neovascularization, enhance the deposition of collagen and expression of alpha-smooth muscle actin (α-SMA), and eliminate the sustained presence of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in the diabetic wound site. As the absence of neovascularization and overexpression of pro-inflammatory markers are a hallmark of diabetes and interfere with wound recovery by preventing the healing process, the heparin-mimetic PA treatment is a promising candidate for acceleration of diabetic wound healing by modulating angiogenesis and local immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.