Bioinformatika semakin populer karena kemampuannya untuk menganalisis dan memproses data biologis dengan cepat dan efektif. Bagian penting dari bioinformatika adalah untuk mengidentifikasi fungsi dan karakteristik protein dengan membangun metode prediksi menggunakan algoritma pembelajaran mesin. Ini termasuk bagaimana pembelajaran mesin dapat digunakan untuk menganalisis dan mengklasifikasikan fungsi protein yang cocok untuk digunakan sebagai deteksi penyakit, merancang perawatan medis yang tepat untuk pasien, dan mengembangkan obat untuk beberapa penyakit. Permintaan untuk pembuatan predictive tools dalam menentukan model protein-ligand dan fungsi protein meningkat untuk mempromosikan penelitian biologi dalam lingkungan desain obat yang inovatif. Namun, dibutuhkan banyak waktu dan upaya untuk mengembangkan alat prediksi yang dapat diterapkan pada protein. Dalam penelitian ini kami mengembangkan tools bioinformatika yang dapat secara otomatis mengembalikan data protein dalam bentuk komposisi asam amino (AAC), komposisi pasangan dipeptida (DPC), dan matriks penentuan spesifikasi posisi (PSSM). Data protein, telah kita ambil dari database uniprot yang berisi file fasta. Penelitian ini, kami membuat alat untuk memfasilitasi ilmuwan dalam memproses atau menganalisis data protein dan juga dapat memprediksi fungsi protein menggunakan algoritma pembelajaran mesin seperti Neural Network dan Random Forest. Kata Kunci—Bionformatika, AAC, DPC, PSSM
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.