This study investigated effects of patchouli essential oil (PEO) inhalation on metabolic parameters. First, to characterize aromatic compounds in PEO, solid-phase microextraction-gas chromatography/mass spectrometric detection was employed in which 19 aromatic compounds were identified. In GC-olfactometry analysis, linalool, α-patchoulene, and β-patchoulene were found to be the constituents exhibiting the highest similarity to the aromatic compounds in patchouli. In an animal experiment using Sprague Darley rats, groups with PEO inhalation had a reduced food intake compared to the control group. Additionally, body weight was lower in the obesity-induced animal model exposed to PEO inhalation than the group without PEO. However, we found no significant difference in organ weights between groups. In our serum analysis, high-density lipoprotein cholesterol was significantly higher in the PEO inhalation groups, while low-density lipoprotein cholesterol content was highest in the positive control group, suggesting that inhalation of the aromatic compounds present in patchouli may improve cholesterol profile. In addition, leptin levels were reduced in the groups treated with PEO inhalation, which explains the differences in food intake and body weight gains. Last, animal groups exposed to PEO inhalation showed a relatively lower systolic blood pressure which suggests that inhalation of PEO (or aromatic compounds therein) may assist in regulating blood pressure. Collectively, our data demonstrate that the inhalation of PEO influenced certain markers related to metabolic diseases, hence provide basic data for future research as to preventive/therapeutic applications of PEO as well as their aromatic constituents.
Platycodon is a ubiquitous plant widely grown in Asia. This study investigated changes in odor/aroma associated sensory attributes and chemical properties in Platycodon grandiflorum roots upon roasting. Amino acid analysis, electronic tongue analysis, chemical property analysis, volatile compound analysis, GC‐olfactometry‐assisted sensory attributes, and electronic nose analysis were performed. In results, amino acid profiles showed diverse patterns. Electronic tongue analysis somewhat corresponded to the free amino acid profiles. Total phenolic content, antioxidant capacity, and browning intensity significantly increased up to 4 min and slightly decreased afterward. Various pyrazines relevant to roasted odor such as 3‐ethyl‐2, 5‐dimethyl‐pyrazine, and 2, 6‐dimethyl‐pyrazine were generated by roasting. In electronic nose analysis, positive odor parameter significantly increased and potential unpleasant odorants significantly decreased over time. This is believed to be the first study demonstrating overall insight on odor/aroma and chemical characteristics and utilizing objective sensory measures on roasted Platycodon grandiflorum roots for food applications. Practical applications This study will be utilized (a) to researchers and food companies who are interested in medicinal foods (b) to individuals and food industry that search for changes in sensory characteristics and chemical changes of foods induced by roasting, and (c) to farmers and crop producers who look for utilization and applications of Platycodon grandiflorum roots as food sources and ingredients.
This study investigated changes of volatile compounds, sniffing test-assisted sensory properties, taste associated-constituent and free amino acid compositions, taste description by electronic-tongue, and chemical characteristics in Perilla frutescens Britton var. acuta Kudo after roasting at 150 °C for 0–8 min. A total of 142 volatile compounds were identified, among which methyl benzoate and limonene were predominant, regardless of roasting time, and these were also detected as the major compounds in the sniffing test by GC-olfactometry. For constituent amino acids analyzed by the acid hydrolysis method using hydrochloric acid (HCl), the concentration of glutamic acid, aspartic acid, and leucine showed an increase pattern with increased roasting time, which results in umami taste, sour taste, and bitter taste, respectively. For free amino acids, valine and hydroxylysine eliciting bitter and bitter and sweet tastes, respectively, also tend to increase by roasting. The pattern of amino acid concentration by roasting was readily matched to the taste description by electronic-tongue but that of sweetness and sourness by electronic-tongue did not coincide with the amino acid composition. For the chemical properties, total phenolic content, antioxidative capacity, and browning intensity tend to increase with roasting but decreased by 8 min. The results of this study provide fundamental information on perilla in both the food industry and cooking environment for the sake of increasing the utilization of perilla as a food source and ingredient.
This study aims to investigate the taste and odor characteristics of broccoli by different thermal processes. For electronic tongue analysis, sourness and umami tastes increased after thermal processing, however, saltiness, sweetness, and bitterness decreased after thermal processing. Among all broccolis, air‐fried broccoli was the highest sourness (6.9) and umami (7.8) tastes, however, saltiness (8.7), sweetness (6.2), and bitterness (10.0) were the highest in the raw broccoli. For electronic nose analysis, a total of 28 volatiles were identified. Among sulfur‐containing compounds, methanethiol and 2,4,5‐tirmethylthiazole were identified as major volatiles in the raw broccoli, however, these volatiles were decreased upon thermal processes. In addition, dimethyl disulfide, 2‐methyl‐3‐furanthiol, and 2‐acetylthiazoline may be generated by thermal processes. In multivariate analysis, the flavor dissimilarity between oven‐heated and microwaved broccolis showed the lowest dissimilarity among all broccolis. Raw broccoli showed the highest dissimilarity among all broccolis. This study is believed to be the first study demonstrating flavors in broccoli by different thermal processing. Novelty impact statement The present work further investigates the effects of various heating processes, including blanching, oven‐heating, microwave heating, and air‐frying. Thus, this study will be utilized by researchers and food industry that are interested in consuming cooked broccoli. The changes in tastes and odors in thermally processed broccolis were rarely reported. Therefore, this study will be considered worthy that contributes to basic data for further study to characterize flavor and taste in broccoli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.