Expansion of human hematopoietic stem cells (HSCs) is a major challenge in cellular therapy, and currently relies on the use of recombinant cytokines or on gene transfer of transcription factors. Of these, the HOXB4 homeoprotein protein is of particular interests as it promotes the expansion of mouse HSCs without inducing the development of leukemia. To eliminate any deleterious effects that might be associated with stable HOXB4 gene transfer into human cells, we took advantage of the ability of HOX proteins to passively translocate through cell membranes. Here we show that when cultured on stromal cells genetically engineered to secrete HOXB4, human long-term culture-initiating cells (LTC-ICs) and nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mouse repopulating cells (SRCs) were expanded by more than 20- and 2.5-fold, respectively, over their input numbers. This expansion was associated with enhanced stem cell repopulating capacity in vivo and maintenance of pluripotentiality. This method provides a basis for developing cell therapy strategies using expanded HSCs that are not genetically modified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.