We explore perturbations about a Friedmann-Robertson-Walker background with a non-vanishing cosmological Chern-Simons scalar field in Chern-Simons gravity. At large momenta one of the two circularly polarized tensor modes becomes ghostlike. We argue that nevertheless the theory does not exhibit classical runaway solutions, except possibly in the relativistic nonlinear regime. However, the ghost modes cause the vacuum state to be quantum mechanically unstable, with a decay rate that is naively infinite. The decay rate can be made finite only if one interprets the theory as an effective quantum field theory valid up to some momentum cutoff Λ, which violates Lorentz invariance. By demanding that the energy density in photons created by vacuum decay over the lifetime of the Universe not violate observational bounds, we derive strong constraints on the two dimensional parameter space of the theory, consisting of the cutoff Λ and the Chern-Simons mass.
The Galactic black hole X-ray binary MAXI J1820+070 had a bright outburst in 2018 when it became the second brightest X-ray source in the Sky. It was too bright for X-ray CCD instruments such as XMM-Newton and Chandra, but was well observed by photon-counting instruments such as NICER and NuSTAR. We report here on the discovery of an excess emission component during the soft state. It is best modelled with a blackbody spectrum in addition to the regular disk emission, modelled either as diskbb or kerrbb. Its temperature varies from about 0.9 to 1.1 keV which is about 30 to 80 per cent higher than the inner disc temperature of diskbb. Its flux varies between 4 and 12 percent of the disc flux. Simulations of magnetised accretion discs have predicted the possibility of excess emission associated with a non-zero torque at the Innermost Stable Circular Orbit (ISCO) about the black hole, which from other NuSTAR studies lies at about 5 gravitational radii or about 60 km (for a black hole mass is 8 M ). In this case the emitting region at the ISCO has a width varying between 1.3 and 4.6 km and would encompass the start of the plunge region where matter begins to fall freely into the black hole.
We develop a general method for the self consistent calculation of the hydrodynamics of an astrophysical object irradiated by a radiation field with an arbitrary strength and spectral energy distribution (SED). Using the XSTAR photoionization code, we calculate heating and cooling rates as a function of gas photoionization parameter and temperature for several examples of SEDs: bremsstrahlung, blackbody, hard and soft state XRBs, Type 1 and Type 2 AGN. As an application of our method we study the hydrodynamics of 1-dimensional spherical winds heated by a uniform radiation field using the code Athena++. We find that in all cases explored a wind settles into a transonic, steady state. The wind evolves along the radiative heating equilibrium curve until adiabatic cooling effects become important and the flow departs from radiative equilibrium. If the flow is heated very rapidly, for example as in a thermally unstable regime, the corresponding column density of gas is low. Perhaps one of the most intriguing results of our work is the two stage acceleration of the wind that happens when there are two thermally unstable regions and the flux is relatively high. The efficiency with which the radiation field transfers energy to the wind is dependent on the SED of the external source, particularly the relative flux of soft X-rays. These results suggest that detailed photoionization calculations are essential not only to predict spectra but also to properly capture the flow dynamics.
Hercules X-1 is one of the best studied highly magnetised neutron star X-ray binaries with a wealth of archival data. We present the discovery of an ionised wind in its X-ray spectrum when the source is in the high state. The wind detection is statistically significant in most of the XMM-Newton observations, with velocities ranging from 200 to 1000 km/s. Observed features in the iron K band can be explained by both wind absorption or by a forest of iron emission lines. However, we also detect nitrogen, oxygen and neon absorption lines at the same systematic velocity in the high-resolution RGS grating spectra. The wind must be launched from the accretion disc, and could be the progenitor of the UV absorption features observed at comparable velocities, but the latter likely originate at significantly larger distances from the compact object. We find strong correlations between the ionisation level of the outflowing material and the ionising luminosity as well as the super-orbital phase. If the luminosity is driving the correlation, the wind could be launched by a combination of Compton heating and radiation pressure. If instead the super-orbital phase is the driver for the variations, the observations are likely scanning the wind at different heights above the warped accretion disc. If this is the case, we can estimate the wind mass outflow rate, corrected for the limited launching solid angle, to be roughly 70% of the mass accretion rate.
Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud onto the surface of an existing co-rotating disc or from the counter-rotating gas moving radially inward to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc center. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating disc for cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α−viscosity including all terms in the viscous stress tensor. For the vertically separated components a shear layer forms between them the middle of this layer in free-fall to the disc center. The accretion rates are increased by factors ∼ 10 2 − 10 4 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc co-rotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are 25 times larger than those for a disc rotating in one direction with the same viscosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.