Since ancient times, wooden structures have been used by man for the construction of buildings and facilities. For many centuries, the structural elements of buildings and facilities made of wood have been the main ones, and still have broad prospects for use in modern capital construction, as they have sufficient high strength and stiffness, are reliable and durable, while having a small mounting weight. In particular, a number of Western countries are already erecting high-rise buildings using a framework of laminated wood constructions. The indisputable advantage of wooden structures is environmental friendliness. However, with all the harmony of the wood structure, its tracheid’s are not standard, which is the main reason for the variability of its mechanical properties. With alteration of a cross-section of flexural member, the nature of the load distribution, as well as the nature of the fracture, changes. An additional factor that affecting the force distribution is the nature of the reinforcement and methods of the reinforcement fixing methods. The methods used to calculate the “low” reinforced beams often give a large error in the calculation of “high” beams. In the work, a rational methodology for calculating wooden glued reinforced beams with symmetrical reinforcement is determined.
Construction is one of the leading economy sectors. Currently, concrete is the basis of most of the structural elements, without which it is impossible to imagine the construction of a single building or facility. Their strength, reinforcement and the period of concrete lifetime are determined at the design stage, taking into account long-term operation. However, in real life, the number of impacts that affects the structural strength is pretty high. In some cases, they are random and do not have standardized values. This is especially true in the construction and exploitation of high-rise buildings and structures. Unlike the multi-storey buildings, they experience significant loads already at the stage of erection, as they support load-lifting mechanisms, formwork systems, workers, etc. The purpose of the presented article is to develop a methodology for estimating the internal fatigue of concrete structures based on changes in their electrical conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.