Comprehensive analysis of space debris rotational dynamics is vital for active debris removal missions that require physical capture or de-tumbling of a target. We study the attitude motion of used rocket bodies acknowledgedly belonging to one of the categories of large space debris objects that pose an immediate danger to space operations in low Earth orbits. Particularly, we focus on Sun-synchronous orbits (SSO) with altitudes in the interval 600 ÷ 800 km, where the density of space debris is maximal. Our mathematical model takes into account the gravity gradient torque and the torque due to eddy currents induced by the interaction of conductive materials with the geomagnetic field. Using perturbation techniques and numerical methods we examine the deceleration of the initial fast rotation and the subsequent transition to a relative equilibrium with respect to the local vertical. A better understanding of the latter phase is achieved owing to a more accurate model of the eddy currents torque than in most prior research. We show that SSO precession is also an important factor influencing the motion properties. One of its effects is manifested at the deceleration stage as the angular momentum vector oscillates about the direction to the south celestial pole.
Low Earth orbits (LEO) are known as a region of high space activity and, consequently, space debris highest density. Launcher upper stages and defunct satellites are the largest space debris objects, whose collisions can result in still greater pollution, rendering further space missions in LEO impossible. Thus, space debris remediation is necessary, and the LEO region is a primary target of active debris removal (ADR) projects. However, ADR planning requires at least an approximate idea of the candidate objects’ attitude dynamics, which is one of the incentives for our study. This paper is mainly focused on modeling and simulating the attitude dynamics of defunct satellites. We consider a “boxwing” configuration satellite with an ellipsoid of inertia close to an oblate ellipsoid of revolution. The dynamical model takes into account the gravity-gradient torque, the torque due to the residual magnetic moment, and the torque due to eddy currents induced by the interaction of conductive materials with the geomagnetic field. A better understanding of the intermediate phase of the exponential deceleration and existing final regimes is achieved owing to a more accurate model of the eddy-current torque than in most prior research.We also show the importance of orbital precession, which contributes to the overall attitude motion evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.