The general bacterial microbiota of the soft tick Ornithodoros turicata found on Bolson tortoises (Gopherus flavomarginatus) were analyzed using next generation sequencing. The main aims of the study were to establish the relative abundance of bacterial taxa in the tick, and to document the presence of potentially pathogenic species for this tortoise, other animals, and humans. The study was carried-out in the Mapimi Biosphere Reserve in the northern-arid part of Mexico. Bolson tortoises (n = 45) were inspected for the presence of soft ticks, from which 11 tortoises (24.4%) had ticks in low loads (1–3 ticks per individual). Tick pools (five adult ticks each) were analyzed through 16S rRNA V3–V4 region amplification in a MiSeq Illumina, using EzBioCloud as a taxonomical reference. The operational taxonomic units (OTUs) revealed 28 phyla, 84 classes, 165 orders, 342 families, 1013 genera, and 1326 species. The high number of taxa registered for O. turicata may be the result of the variety of hosts that this tick parasitizes as they live inside G. flavomarginatus burrows. While the most abundant phyla were Proteobacteria, Actinobacteria, and Firmicutes, the most abundant species were two endosymbionts of ticks (Midichloria-like and Coxiella-like). Two bacteria documented as pathogenic to Gopherus spp. were registered (Mycoplasma spp. and Pasteurella testudinis). The bovine and ovine tick-borne pathogens A. marginale and A. ovis, respectively, were recorded, as well as the zoonotic bacteria A. phagocytophilum,Coxiella burnetii, and Neoehrlichia sp. Tortoises parasitized with O. turicata did not show evident signs of disease, which could indicate a possible ecological role as a reservoir that has yet to be demonstrated. In fact, the defense mechanisms of this tortoise against the microorganisms transmitted by ticks during their feeding process are still unknown. Future studies on soft ticks should expand our knowledge about what components of the microbiota are notable across multiple host–microbe dynamics. Likewise, studies are required to better understand the host competence of this tortoise, considered the largest terrestrial reptile in North America distributed throughout the Chihuahuan Desert since the late Pleistocene.
The Mexican wolf (Canis lupus baileyi) was once distributed in southern United States and northern Mexico. It is an endangered subspecies detached from the gray wolf, and likely exemplifies one of the original migration waves of C. lupus into the new world. This is a canine whose individuals survive in specialized facilities, zoos, and museums as part of captive-breeding programs. In order to contribute to the improvement of the management of this species and favor its long-term conservation in Mexico, we aimed to evaluate the diversity and abundance of the fecal bacterial microbiota in two populations exposed to different types of diet: (1) Michilia (23° N, 104° W); kibble daily and raw meat sporadically, and (2) Ocotal (19° N, 99° W); raw meat daily and live animals periodically. Next generation sequencing (V3-V4 16S rRNA gene) by Illumina was implemented. The operational taxonomic units (OTUs) in Michilia resulted in 9 phyla, 19 classes, 34 orders, 61 families, 204 genera, and 316 species, while in Ocotal there were 12 phyla, 24 classes, 37 orders, 69 families, 232 genera, and 379 species. Higher estimated Chao1 richness, Shannon diversity, and core microbiota were observed in Ocotal. Differences (p < 0.05) between populations occurred according to the Bray–Curtis beta diversity index. In the Michilia, dominance of bacteria that degrade carbohydrates (Firmicutes, Lachnospiraceae, Blautia, Clostrodium, Eisenbergiella, Romboutsia, and Ruminococcus) was observed; they are abundant in kibble diets. In contrast, the Ocotal microbiota was dominated by protein-degrading bacteria (Fusobacteria, Fusobacteriaceae, and Fusobacteria), indicating a possible positive relation with a raw meat diet. The information generated in this study is fundamental to support the implementation of better management plans in the two populations considered here, as well as in different facilities of southern United States and Mexico, where this subspecies is kept in captivity for conservation purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.