Cellulase-free xylanase has potential for its application in the selective removal of hemicellulose from kraft pulp to give good strength to paper. In this study, a gene (xyn) encoding cellulase activity-free xylanase enzyme (Xyn) was isolated from Paenibacillus polymyxa PPL-3. The xyn gene encoded a protein of 221 amino acids, and the purified Xyn was about 22.5 kDa measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Moreover, the cellulase activity-free xylanase enzyme (Xyn) was displayed on the cell surface of Saccharomyces cerevisiae EBY100 using Aga2p as an anchor protein. Cell surface display of xylanase enzyme (Xyn) on S. cerevisiae EBY100 was confirmed by immunofluorescence microscopy. Optimum cell surface display of xylanase enzyme (Xyn) was observed at pH 7 and 40 °C. Therefore, cell surface-displayed xylanase enzyme (Xyn) can be used in the paper industry.
The efficacy of different concentrations of NaOH (0.25%, 0.50%, 0.75%, and 1.00%) for the pretreatment of rice straw in solid and powder state in enzymatic saccharification and fermentation for the production of bioethanol was evaluated. A greater amount of biomass was recovered through solid-state pretreatment (3.74 g) from 5 g of rice straw. The highest increase in the volume of rice straw powder as a result of swelling was observed with 1.00% NaOH pretreatment (48.07%), which was statistically identical to 0.75% NaOH pretreatment (32.31%). The surface of rice straw was disrupted by the 0.75% NaOH and 1.00% NaOH pretreated samples as observed using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). In Fourier-transform infrared (FT-IR) spectra, absorbance of hydroxyl groups at 1,050 cm(-1) due to the OH group of lignin was gradually decreased with the increase of NaOH concentration. The greatest amounts of glucose and ethanol were obtained in 1.00% NaOH solid-state pretreated and powder-state hydrolyzed samples (0.804 g g(-1) and 0.379 g g(-1), respectively), which was statistically similar to the use of 0.75% NaOH (0.763 g g(-1) and 0.358 g g(-1), respectively). Thus, solid-state pretreatment with 0.75% NaOH and powder-state hydrolysis appear to be suitable for fermentation and bioethanol production from rice straw.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.