Summary
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by breakdown of tolerance to nucleic acids and highly diverse clinical manifestations. To assess its molecular heterogeneity, we longitudinally profiled the blood transcriptome of 158 pediatric patients. Using mixed models accounting for repeated measurements, demographics, treatment, disease activity (DA) and nephritis class, we confirmed a prevalent IFN signature and identified a plasmablast signature as the most robust biomarker of DA. We detected gradual enrichment of neutrophil transcripts during progression to active nephritis, and distinct signatures in response to treatment in different nephritis subclasses. Importantly, personalized immunomonitoring uncovered individual correlates of disease activity that enabled patient stratification into seven groups, which were supported by patient genotypes. Our study uncovers the molecular heterogeneity of SLE and provides an explanation for the failure of clinical trials. This approach may improve trial design and implementation of tailored therapies in genetically and clinically complex autoimmune diseases.
Nerve growth factor-induced BA (NGFI-BA, Nur77) is an orphan nuclear receptor with no known endogenous ligands; however, recent studies on a series of methylene-substituted diindolylmethanes (C-DIM) have identified 1,1-bis(3 ¶-indolyl)-1-(phenyl)methane (DIM-C-Ph) and 1,1-bis(3 ¶-indolyl)-1-(p-anisyl)methane (DIM-C-pPhOCH 3 ) as Nur77 agonists. Nur77 is expressed in several colon cancer cell lines (RKO, SW480, HCT-116, HT-29, and HCT-15), and we also observed by immunostaining that Nur77 was overexpressed in colon tumors compared with normal colon tissue. DIM-C-Ph and DIM-C-pPhOCH 3 decreased survival and induced apoptosis in RKO colon cancer cells, and this was accompanied by induction of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein. The induction of apoptosis and TRAIL by DIM-C-pPhOCH 3 was significantly inhibited by a small inhibitory RNA for Nur77 (iNur77); however, it was evident from RNA interference studies that DIM-C-pPhOCH 3 also induced Nur77-independent apoptosis. Analysis of DIM-C-pPhOCH 3 -induced gene expression using microarrays identified several proapoptotic genes, and analysis by reverse transcription-PCR in the presence or absence of iNur77 showed that induction of programmed cell death gene 1 was Nur77 dependent, whereas induction of cystathionase and activating transcription factor 3 was Nur77 independent. DIM-C-pPhOCH 3 (25 mg/kg/d) also inhibited tumor growth in athymic nude mice bearing RKO cell xenografts. These results show that Nur77-active C-DIM compounds represent a new class of anti-colon cancer drugs that act through receptordependent and receptor-independent pathways. [Cancer Res 2007;67(2):674-83]
Summary
The molecular mechanism of autophagy and its relationship to other lysosomal degradation pathways remain incompletely understood. Here, we identified a previously uncharacterized mammalian-specific protein, Beclin 2, which like Beclin 1, functions in autophagy and interacts with class III PI3K complex components and Bcl-2. However, Beclin 2, but not Beclin 1, functions in an additional lysosomal degradation pathway. Beclin 2 is required for ligand-induced endolysosomal degradation of several G protein-coupled receptors (GPCRs) through its interaction with GASP1. Beclin 2 homozygous knockout mice have decreased embryonic viability, and heterozygous knockout mice have defective autophagy, increased levels of brain cannabinoid 1 receptor, elevated food intake, and obesity and insulin resistance. Our findings identify Beclin 2 as a novel converging regulator of autophagy and GPCR turnover, and highlight the functional and mechanistic diversity of Beclin family members in autophagy, endolysosomal trafficking and metabolism.
Rituximab is a promising new therapy for SLE. The variability of responses in patients with SLE may be related to HACA formation. The failure to respond to immunisations is surprising, in view of the apparently low risk of infections. Better biological markers are necessary to follow these patients during treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.