The applications of mesoionic compounds and their analogues as agents against plant viruses remain unexplored. This was the first evaluation of the antiviral activities of mesoionic compounds on this issue. Our study involved the design and synthesis of a series of novel imidazo[1,2-a]pyridine mesoionic compounds containing a sulfonamide moiety and the assessment of their antiviral activities against potato virus Y (PVY). Compound A33 was assessed on the basis of three-dimensional quantitative structure–activity relationship (3D-QSAR) model analysis and displayed good curative, protective, and inactivating activity effects against PVY at 500 mg/L, up to 51.0, 62.0, and 82.1%, respectively, which were higher than those of commercial ningnanmycin (NNM, at 47.2, 50.1, and 81.4%). Significantly, defensive enzyme activities and proteomics results showed that compound A33 could enhance the defense response by activating the activity of defense enzymes, inducing the glycolysis/gluconeogenesis pathway of tobacco to resist PVY infection. Therefore, our study indicates that compound A33 could be applied as a potential viral inhibitor.
A series of novel mesoionic pyrido[1,2-a]pyrimidinone compounds incorporating a dithioacetal skeleton were designed and synthesized for use as insecticidal agents. The biological activity of the title compounds indicated good to excellent insecticidal activities against bean aphids (Aphis craccivora) and white-backed planthoppers (Sogatella furcifera). Compound 34 showed excellent insecticidal activity against bean aphids (A. craccivora) with an LC50 value of 2.80 μg/mL, exceeding the insecticidal activity of trifluoropyrimidine (LC50 = 4.20 μg/mL). Proteomics and molecular docking results indicated that compound 34 could act on nicotinic acetylcholine receptors. This study provides support for the application of mesoionic pyrido[1,2-a]pyrimidinone compounds containing dithioacetal as novel insecticidal agents.
The development of effective antibacterial agents equipped with novel action modes and unique skeletons starting from natural compounds serves as an important strategy in the modern pesticide industry. Disclosed here are a series of novel indole derivatives containing pyridinium moieties and their antibacterial activity evaluation against two prevalent phytopathogenic bacteria, Xanthomonas oryzae pv. oryzicola (Xoc) and X. oryzae pv. oryzae (Xoo). A three-dimensional (3D)-QSAR model was adopted to discover higher activity like title compounds based on the Xoc antibacterial activity of the tested compounds. Compound 43 was consequently designed, and it displayed higher antibacterial activity as expected with the half-maximal effective concentration EC50 values of 1.0 and 1.9 μg/mL for Xoo and Xoc, respectively, which were better than those of the commercial drug thiodiazole copper (TC) (72.9 and 87.5 μg/mL). Under greenhouse conditions, the results of a rice in vivo pot experiment indicated that the protective and curative activities of compound 43 against rice bacterial leaf streak (BLS) and rice bacterial blight (BLB) were 45.0 and 44.0% and 42.0 and 39.3%, respectively, which were better than those of the commercial agent thiodiazole copper (38.0 and 37.9%, 38.6 and 37.0%) as well. Scanning electron microscopy images, defense enzyme activity tests, and proteomic techniques were utilized in a preliminary mechanism study, suggesting that compound 43 shall modulate and interfere with the physiological processes and functions of pathogenic bacteria.
In this study, a series of novel mesoionic pyrido[1,2-a]pyrimidinone compounds containing a natural skeleton indole were designed and synthesized, and the insecticidal activities of the target compounds were tested. The results showed that the target compounds had good to excellent insecticidal activities against white-backed planthoppers (Sogatella furcifera) and bean aphids (Aphis craccivora). Among them, compound 7 showed outstanding insecticidal activities against both S. furcifera and A. craccivora, with LC50 values of 0.86 and 0.85 μg/mL, respectively. The insecticidal activity against bean aphids (A. craccivora) was superior to that of triflumezopyrim (LC50 = 3.67 μg/mL). Proteomics and quantitative real-time polymerase chain reaction (qRT-PCR) results revealed that compound 7 may interact with α1 and α7 nAChR subunits of S. furcifera. The results of enzyme activities indicated that compound 7 was an inhibitor of AChE in S. furcifera. This study provides new ideas for the discovery of new mesoionic pyrido[1,2-a]pyrimidinone insecticides.
Cucumber mosaic virus (CMV) is currently a known plant virus with the most hosts, broadest distribution, and economic hazard. To develop new antiviral drugs against this serious virus, a new range of coumarin derivatives containing sulfonamide and dithioacetal structures were designed and synthesized, and their anti-CMV activities were detected by the half-leaf dead spot method. The results of the biological activity assay showed that most of the compounds exhibited outstanding anti-CMV activity. Especially, compound C23 displayed the optimal in vivo anti-CMV activity, with an EC 50 value of 128 μg/mL, which was remarkably better than that of COS (781 μg/mL) and ningnanmycin (436 μg/mL). Excitingly, we found that compound C23 could be a promising plant activator that significantly increased defense-related enzyme activities and the tobacco chlorophyll content. Furthermore, compound C23 enhanced defense responses against viral infection by inducing the abscisic acid (ABA) pathway in tobacco. This work established a basis for multifunction pesticide discovery involving mechanism of action study and structure optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.