The eukaryotic initiation factor 4E (eIF4E) plays a central role in the initiation of gene translation and subsequent protein synthesis by binding the 5' terminal mRNA cap structure. We designed and synthesized a series of novel compounds that display potent binding affinity against eIF4E despite their lack of a ribose moiety, phosphate, and positive charge as present in m7-GMP. The biochemical activity of compound 33 is 95 nM for eIF4E in an SPA binding assay. More importantly, the compound has an IC(50) of 2.5 μM for inhibiting cap-dependent mRNA translation in a rabbit reticular cell extract assay (RRL-IVT). This series of potent, truncated analogues could serve as a promising new starting point toward the design of neutral eIF4E inhibitors with physicochemical properties suitable for cellular activity assessment.
Inhibitors that block the programmed cell death-1 (PD-1) pathway can potentiate endogenous antitumor immunity and have markedly improved cancer survival rates across a broad range of indications. However, these treatments work for only a minority of patients. The efficacy of anti-PD-1 inhibitors may be extended by cytokines, however, the incorporation of cytokines into therapeutic regimens has significant challenges. In their natural form when administered as recombinant proteins, cytokine treatments are often associated with low response rates. Most cytokines have a short half-life which limits their exposure and efficacy. In addition, cytokines can activate counterregulatory pathways, in the case of immune-potentiating cytokines this can lead to immune suppression and thereby diminish their potential efficacy. Improving the drug-like properties of natural cytokines using protein engineering can yield synthetic cytokines with improved bioavailability and tissue targeting, allowing for enhanced efficacy and reduced off-target effects. Using structure guided engineering we have designed a novel class of antibody-cytokine fusion proteins consisting of a PD-1 targeting antibody fused together with an interleukin-21 (IL-21) cytokine mutein. Our bifunctional fusion proteins can block PD-1/programmed death-ligand 1 (PD-L1) interaction whilst simultaneously delivering IL-21 cytokine to PD-1 expressing T cells. Targeted delivery of IL-21 can improve T cell function in a manner that is superior to anti-PD-1 monotherapy. Fusion of engineered IL-21 variants to anti-PD1 antibodies can improve the drug-like properties of IL-21 cytokine leading to improved cytokine serum half-life allowing for less frequent dosing. In addition, we show that targeted delivery of IL-21 can minimize any potential detrimental effect on local antigen-presenting cells. A highly attenuated IL-21 mutein variant (R9E:R76A) fused to a PD-1 antibody provides protection in a humanized mouse model of cancer that is refractory to anti-PD-1 monotherapy. Collectively, our preclinical data demonstrate that this approach may improve upon and extend the utility of anti-PD-1 therapeutics currently in the clinic.
Eukaryotic mRNAs are appended at the 5' end, with the 7-methylguanosine cap linked by a 5'-5'-triphosphate bridge to the first transcribed nucleoside (m7GpppX). Initiation of cap-dependent translation of mRNA requires direct interaction between the cap structure and the eukaryotic translation initiation factor eIF4E. Biophysical studies of the association between eIF4E and various cap analogs have demonstrated that m(7)GTP binds to the protein ca. -5.0 kcal/mol more favorably than unmethylated GTP. In this work, a thermodynamic analysis of the binding process between eIF4E and several cap analogs has been conducted using Monte Carlo (MC) simulations in conjunction with free energy perturbation (FEP) calculations. To address the role of the 7-methyl group in the eIF4E/m7GpppX cap interaction, binding free energies have been computed for m(7)GTP, GTP, protonated GTP at N(7), the 7-methyldeazaguanosine 5'-triphosphate (m(7)DTP), and 7-deazaguanosine 5'-triphosphate (DTP) cap analogs. The MC/FEP simulations for the GTP-->m(7)DTP transformation demonstrate that half of the binding free energy gain of m(7)GTP with respect to GTP can be attributed to favorable van der Waals interactions with Trp166 and reduced desolvation penalty due to the N(7) methyl group. The methyl group both eliminates the desolvation penalty of the N(7) atom upon binding and creates a larger cavity within the solvent that further facilitates the desolvation step. Analysis of the pair m(7)GTP-m(7)DTP suggests that the remaining gain in affinity is related to the positive charge created on the guanine moiety due to the N(7) methylation. The charge provides favorable cation-pi interactions with Trp56 and Trp102 and decreases the negative molecular charge, which helps the transfer from the solvent, a more polar environment, to the protein.
Sphingosine kinase activity is not required for tumor cell viability Holger Wesche, Matthew L. Brown, Timothy J. Carlson, Angela Coxon, Brendon Frank, Darin J. Gustin, Shawn Jeffries, Shyun Li, Yihong Li, Kurt Morgenstern, Matthew Plant, Karen Rex, Joanna Schmidt, Shanling Shen, Nigel Walker, Dineli Wickramasinghe, Mariwil Wong, Guifen Xu Contribution from the Departments of Oncology Research, Medicinal Chemistry, Molecular Structure and Characterization and Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, 1120 Veterans Blvd., South San Francisco, Ca, 94080. Sphingosine kinases (SPHKs) are enzymes that phosphorylate the lipid sphingosine, leading to the formation of sphingosine-1-phosphate (S1P). In addition to the well established role of extracellular S1P as a mitogen and potent chemoattractant, SPHK activity has been postulated to be an important intracellular regulator of apoptosis. According to the proposed rheostat theory, SPHK activity shifts the intracellular balance from the pro-apoptotic sphingolipids ceramide and sphingosine to the mitogenic S1P, thereby determining the susceptibility of a cell to apoptotic stress. Despite numerous publications with supporting evidence, a clear experimental confirmation of the impact of this mechanism on tumor cell viability in vitro and in vivo has been hampered by the lack of suitable tool reagents. Utilizing a structure based design approach, we developed potent and specific SPHK1/2 inhibitors. These compounds completely inhibited intracellular S1P production in human cells and attenuated vascular permeability in mice, but did not lead to reduced tumor cell growth in vitro or in vivo. These results show that the SPHK rheostat does not play a major role in tumor cell viability, and that SPHK inhibition may not offer an advantage over S1P neutralization in the treatment of cancer. Citation Format: Holger Wesche, Matthew L. Brown, Timothy J. Carlson, Angela Coxon, Brendon Frank, Darin J. Gustin, Shawn Jeffries, Shyun Li, Yihong Li, Kurt Morgenstern, Kurt Morgenstern, Matthew Plant, Karen Rex, Joanna Schmidt, Shanling Shen, Nigel Walker, Dineli Wickramasinghe, Guifen Xu. Sphingosine kinase activity is not required for tumor cell viability. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr LB-39. doi:10.1158/1538-7445.AM2013-LB-39
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.