TianQin is a planned space-based gravitational wave (GW) observatory consisting of three Earth-orbiting satellites with an orbital radius of about $10^5 \, {\rm km}$. The satellites will form an equilateral triangle constellation the plane of which is nearly perpendicular to the ecliptic plane. TianQin aims to detect GWs between $10^{-4} \, {\rm Hz}$ and $1 \, {\rm Hz}$ that can be generated by a wide variety of important astrophysical and cosmological sources, including the inspiral of Galactic ultra-compact binaries, the inspiral of stellar-mass black hole binaries, extreme mass ratio inspirals, the merger of massive black hole binaries, and possibly the energetic processes in the very early universe and exotic sources such as cosmic strings. In order to start science operations around 2035, a roadmap called the 0123 plan is being used to bring the key technologies of TianQin to maturity, supported by the construction of a series of research facilities on the ground. Two major projects of the 0123 plan are being carried out. In this process, the team has created a new-generation $17 \, {\rm cm}$ single-body hollow corner-cube retro-reflector which was launched with the QueQiao satellite on 21 May 2018; a new laser-ranging station equipped with a $1.2 \, {\rm m}$ telescope has been constructed and the station has successfully ranged to all five retro-reflectors on the Moon; and the TianQin-1 experimental satellite was launched on 20 December 2019—the first-round result shows that the satellite has exceeded all of its mission requirements.
High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented.
High precision accelerometer plays an important role in space scientific and technical applications. A quartz-flexure accelerometer operating in low frequency range, having a resolution of better than 1 ng/Hz(1/2), has been designed based on advanced capacitive sensing and electrostatic control technologies. A high precision capacitance displacement transducer with a resolution of better than 2 × 10(-6) pF/Hz(1/2) above 0.1 Hz, is used to measure the motion of the proof mass, and the mechanical stiffness of the spring oscillator is compensated by adjusting the voltage between the proof mass and the electrodes to induce a proper negative electrostatic stiffness, which increases the mechanical sensitivity and also suppresses the position measurement noise down to 3 × 10(-10) g/Hz(1/2) at 0.1 Hz. A high resolution analog-to-digital converter is used to directly readout the feedback voltage applied on the electrodes in order to suppress the action noise to 4 × 10(-10) g/Hz(1/2) at 0.1 Hz. A prototype of the quartz-flexure accelerometer has been developed and tested, and the preliminary experimental result shows that its resolution comes to about 8 ng/Hz(1/2) at 0.1 Hz, which is mainly limited by its mechanical thermal noise due to low quality factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.