A wavelength-tunable single-longitudinal-mode (SLM) narrow-linewidth thulium/holmium co-doped fiber laser (THDFL) was developed in this study. The lasing wavelength was determined by combining a phase-shifted fiber Bragg grating (PS-FBG) and a uniform FBG (UFBG). SLM oscillation was achieved by incorporating a dual-coupler ring filter with the PS-FBG. At a pump power of 2.0 W, the THDFL exhibited excellent SLM lasing performance with a stable optical spectrum. It operated at an output wavelength of ~2050 nm with an optical signal-to-noise ratio of >81 dB, an output power fluctuation of 0.15 dB, a linewidth of 8.468 kHz, a relative intensity noise of ≤−140.32 dB/Hz@≥5 MHz, a slope efficiency of 2.15%, and a threshold power of 436 mW. The lasing wavelength tunability was validated experimentally by stretching the PS-FBG and UFBG simultaneously. The proposed THDFL had significant potential for application in many fields, including free-space optical communication, LiDAR, and high-precision spectral measurement.
Continuous-wave and mode-locked Cr(4+):Ca(2)GeO(4) lasers that use a fiber laser pump source were demonstrated. The continuous-wave Cr(4+):Ca(2)GeO(4) laser yielded a maximum output power of 415 mW at 1420 nm and a tuning range of 1335-1492 nm. With a saturable-absorber mirror, 60-ps pulses and 110-mW maximum output power were generated from a passively mode-locked Cr(4+):Ca(2)GeO(4) laser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.