Data mining techniques are applied in many applications as a standard procedure for analyzing the large volume of available data, extracting useful information and knowledge to support the major decision-making processes. Diabetes mellitus is a continuing, general, deadly syndrome occurring all around the world. It is characterized by hyperglycemia occurring due to abnormalities in insulin secretion which would in turn result in irregular rise of glucose level. In recent years, the impact of Diabetes mellitus has increased to a great extent especially in developing countries like India. This is mainly due to the irregularities in the food habits and life style. Thus, early diagnosis and classification of this deadly disease has become an active area of research in the last decade. Numerous clustering and classifications techniques are available in the literature to visualize temporal data to identify trends for controlling diabetes mellitus. This work presents an experimental study of several algorithms which classifies Diabetes Mellitus data effectively. The existing algorithms are analyzed thoroughly to identify their advantages and limitations. The performance assessment of the existing algorithms is carried out to determine the best approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.