Rac signalling to actin -- a pathway that is thought to be mediated by the protein Scar/WAVE (WASP (Wiskott-Aldrich syndrome protein)-family verprolin homologous protein -- has a principal role in cell motility. In an analogous pathway, direct interaction of Cdc42 with the related protein N-WASP stimulates actin polymerization. For the Rac-WAVE pathway, no such direct interaction has been identified. Here we report a mechanism by which Rac and the adapter protein Nck activate actin nucleation through WAVE1. WAVE1 exists in a heterotetrameric complex that includes orthologues of human PIR121 (p53-inducible messenger RNA with a relative molecular mass (M(r)) of 140,000), Nap125 (NCK-associated protein with an M(r) of 125,000) and HSPC300. Whereas recombinant WAVE1 is constitutively active, the WAVE1 complex is inactive. We therefore propose that Rac1 and Nck cause dissociation of the WAVE1 complex, which releases active WAVE1-HSPC300 and leads to actin nucleation.
DNA in somatic tissue is characterized by a bimodal pattern of methylation, which is established in the animal through a series of developmental events. In the mouse blastula, most DNA is unmethylated, but after implantation a wave of de novo methylation modifies most of the genome, excluding the majority of CpG islands, which are mainly associated with housekeeping genes. This genomic methylation pattern is broadly maintained during the life of the organism by maintenance methylation, and generally correlates with gene expression. Experiments both in vitro and in vivo indicate that methylation inhibits transcription. It has not yet been possible, however, to determine the role of DNA methylation on specific sequences during normal development. Cis-acting regulatory elements and trans-acting factors appear to be involved in both stage- and tissue-specific demethylation processes. Sp1-like elements have a key role in protecting the CpG island of Aprt (encoding adenine phosphoribosyltransferase) from de novo methylation, and when these elements are specifically mutated, the Aprt CpG island becomes methylated in transgenic mice. We have now characterized an embryo-specific element from the CpG island sequence upstream of Aprt that can protect itself from de novo methylation in transgenic mice as well as reduce methylation of flanking sequences. We placed this element on a removable cassette adjacent to a human HBB (encoding beta-globin) reporter and generated a transgene whose methylation pattern can be switched in vivo. Analysis of globin transcription in this system showed that methylation in cis inhibits gene expression in a variety of tissues, indicating that DNA modification may serve as a global genomic repressor.
The imprinted Igf2 gene is associated with a small upstream region that is differentially methylated on the active paternal allele. We have identi®ed a repressor element within this sequence and shown that repression is probably mediated through a transacting factor, GCF2. DNA methylation of this site abrogates both protein binding and repressor activity. Targeting experiments demonstrate that this element plays a role in the repression of the maternal Igf2 gene in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.