The highly transmissible B.1.1.7 variant of SARS-CoV-2, first identified in the United Kingdom, has gained a foothold across the world. Using S gene target failure (SGTF) and SARS-CoV-2 genomic sequencing, we investigated the prevalence and dynamics of this variant in the United States (U.S.), tracking it back to its early emergence. We found that while the fraction of B.1.1.7 varied by state, the variant increased at a logistic rate with a roughly weekly doubling rate and an increased transmission of 40-50%. We revealed several independent introductions of B.1.1.7 into the U.S. as early as late November 2020, with community transmission spreading it to most states within months. We show that the U.S. is on a similar trajectory as other countries where B.1.1.7 became dominant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.
Purpose: Genetic changes in sporadic ovarian cancer are relatively poorly characterized compared with other tumor types.We have evaluated the use of high-resolution whole genome arrays for the genetic profiling of epithelial ovarian cancer. Experimental Design: We have evaluated 31 primary ovarian cancers and matched normal DNA for loss of heterozygosity and copy number alterations using 500K single nucleotide polymorphism arrays. Results: In addition to identifying the expected large-scale genomic copy number changes, >380 small regions of copy number gain or loss (<500 kb) were identified among the 31 tumors, including 33 regions of high-level gain (>5 copies) and 27 homozygous deletions. The existence of such a high frequency of small regions exhibiting copy number alterations had not been previously suspected because earlier genomic array platforms lacked comparable resolution. Interestingly, many of these regions harbor known cancer genes. For example, one tumor harbored a 350-kb high-level amplification centered on FGFR1 and three tumors showed regions of homozygous loss 109 to 216 kb in size involving the RB1 tumor suppressor gene only. Conclusions: These data suggest that novel cancer genes may be located within the other identified small regions of copy number alteration. Analysis of the number of copy number breakpoints and the distribution of the small regions of copy number change indicate high levels of structural chromosomal genetic instability in ovarian cancer.
As of January of 2021, the highly transmissible B.1.1.7 variant of SARS-CoV-2, which was first
identified in the United Kingdom (U.K.), has gained a strong foothold across the world. Because of the sudden and rapid rise of B.1.1.7, we investigated the prevalence and growth dynamics of this variant in the United States (U.S.), tracking it back to its early emergence and onward local transmission. We found that the RT-qPCR testing anomaly of S gene target failure (SGTF), first observed in the U.K., was a reliable proxy for B.1.1.7 detection. We sequenced 212 B.1.1.7 SARS-CoV-2 genomes collected from testing facilities in the U.S. from December 2020 to January 2021. We found that while the fraction of B.1.1.7 among SGTF samples varied by state, detection of the variant increased at a logistic rate similar to those observed elsewhere, with a doubling rate of a little over a week and an increased transmission rate of 35-45%. By performing time-aware Bayesian phylodynamic analyses, we revealed several independent introductions of B.1.1.7 into the U.S. as early as late November 2020, with onward community transmission enabling the variant to spread to at least 30 states as of January 2021. Our study shows that the U.S. is on a similar trajectory as other countries where B.1.1.7 rapidly became the dominant SARS-CoV-2 variant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.
Formalin-fixed, paraffin-embedded (FFPE) material tends to yield degraded DNA and is thus suboptimal for use in many downstream applications. We describe an integrated analysis of genotype, loss of heterozygosity (LOH), and copy number for DNA derived from FFPE tissues using oligonucleotide microarrays containing over 500K single nucleotide polymorphisms. A prequalifying PCR test predicted the performance of FFPE DNA on the microarrays better than age of FFPE sample. Although genotyping efficiency and reliability were reduced for FFPE DNA when compared with fresh samples, closer examination revealed methods to improve performance at the expense of variable reduction in resolution. Important steps were also identified that enable equivalent copy number and LOH profiles from paired FFPE and fresh frozen tumor samples. In conclusion, we have shown that the Mapping 500K arrays can be used with FFPE-derived samples to produce genotype, copy number, and LOH predictions, and we provide guidelines and suggestions for application of these samples to this integrated system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.