BackgroundColon cancer arises from the accumulation of multiple genetic and epigenetic alterations to normal colonic tissue. microRNAs (miRNAs) are small, non-coding regulatory RNAs that post-transcriptionally regulate gene expression. Differential miRNA expression in cancer versus normal tissue is a common event and may be pivotal for tumor onset and progression.MethodsTo identify miRNAs that are differentially expressed in tumors and tumor subtypes, we carried out highly sensitive expression profiling of 735 miRNAs on samples obtained from a statistically powerful set of tumors (n = 80) and normal colon tissue (n = 28) and validated a subset of this data by qRT-PCR.ResultsTumor specimens showed highly significant and large fold change differential expression of the levels of 39 miRNAs including miR-135b, miR-96, miR-182, miR-183, miR-1, and miR-133a, relative to normal colon tissue. Significant differences were also seen in 6 miRNAs including miR-31 and miR-592, in the direct comparison of tumors that were deficient or proficient for mismatch repair. Examination of the genomic regions containing differentially expressed miRNAs revealed that they were also differentially methylated in colon cancer at a far greater rate than would be expected by chance. A network of interactions between these miRNAs and genes associated with colon cancer provided evidence for the role of these miRNAs as oncogenes by attenuation of tumor suppressor genes.ConclusionColon tumors show differential expression of miRNAs depending on mismatch repair status. miRNA expression in colon tumors has an epigenetic component and altered expression that may reflect a reversion to regulatory programs characteristic of undifferentiated proliferative developmental states.
Changes in miRNA expression are a common feature in colon cancer. Those changes occurring in the transition from normal to adenoma and from adenoma to carcinoma, however, have not been well defined. Additionally, miRNA changes among tumor subgroups of colon cancer have also not been adequately evaluated. In this study, we examined the global miRNA expression in 315 samples that included 52 normal colonic mucosa, 41 tubulovillous adenomas, 158 adenocarcinomas with proficient DNA mismatch repair (pMMR) selected for stage and age of onset, and 64 adenocarcinomas with defective DNA mismatch repair (dMMR) selected for sporadic (n = 53) and inherited colon cancer (n = 11). Sporadic dMMR tumors all had MLH1 inactivation due to promoter hypermethylation. Unsupervised PCA and cluster analysis demonstrated that normal colon tissue, adenomas, pMMR carcinomas and dMMR carcinomas were all clearly discernable. The majority of miRNAs that were differentially expressed between normal and polyp were also differentially expressed with a similar magnitude in the comparison of normal to both the pMMR and dMMR tumor groups, suggesting a stepwise progression for transformation from normal colon to carcinoma. Among the miRNAs demonstrating the largest fold up- or down-regulated changes (≥4), four novel (miR-31, miR-1, miR-9 and miR-99a) and two previously reported (miR-137 and miR-135b) miRNAs were identified in the normal/adenoma comparison. All but one of these (miR-99a) demonstrated similar expression differences in the two normal/carcinoma comparisons, suggesting that these early tumor changes are important in both the pMMR- and dMMR-derived cancers. The comparison between pMMR and dMMR tumors identified four miRNAs (miR-31, miR-552, miR-592 and miR-224) with statistically significant expression differences (≥2-fold change).
Multiple studies have identified loci associated with the risk of developing prostate cancer but the associated genes are not well studied. Here we create a normal prostate tissue-specific eQTL data set and apply this data set to previously identified prostate cancer (PrCa)-risk SNPs in an effort to identify candidate target genes. The eQTL data set is constructed by the genotyping and RNA sequencing of 471 samples. We focus on 146 PrCa-risk SNPs, including all SNPs in linkage disequilibrium with each risk SNP, resulting in 100 unique risk intervals. We analyse cis-acting associations where the transcript is located within 2 Mb (±1 Mb) of the risk SNP interval. Of all SNP–gene combinations tested, 41.7% of SNPs demonstrate a significant eQTL signal after adjustment for sample histology and 14 expression principal component covariates. Of the 100 PrCa-risk intervals, 51 have a significant eQTL signal and these are associated with 88 genes. This study provides a rich resource to study biological mechanisms underlying genetic risk to PrCa.
Purpose Recent progress in understanding the molecular biology of epithelial ovarian cancer has not yet translated into individualized treatment for these women or improvements in their disease outcome. Gene expression has been utilized to identify distinct molecular subtypes, but there have been no reports investigating whether or not molecular subtyping is predictive of response to bevacizumab in ovarian cancer. Experimental Design DASL gene expression arrays were performed on FFPE tissue from patients enrolled on the ICON7 trial. Patients were stratified into four TCGA molecular subtypes. Associations between molecular subtype and the efficacy of randomly assigned therapy with bevacizumab were assessed. Results Molecular subtypes were assigned as follows: 122 immunoreactive (34%), 96 proliferative (27%), 73 differentiated (20%), and 68 mesenchymal (19%). In univariate analysis patients with tumors of proliferative subtype obtained the greatest benefit from bevacizumab with a median PFS improvement of 10.1 months (HR 0.55 [95%CI 0.34–0.90], p=0.016). For the mesenchymal subtype, bevacizumab conferred a non-significant improvement in PFS 8.2 months (HR 0.78 [95%CI 0.44–1.40], p=0.41). Bevacizumab conferred modest improvements in PFS for patients with immunoreactive subtype (3.8 months; p=0.08) or differentiated subtype (3.7 months; p=0.61). Multivariate analysis demonstrated significant PFS improvement in proliferative subtype patients only (HR 0.45 [95%CI 0.27–0.74 p=0.0015]). Conclusions Molecular subtypes with the poorest survival (proliferative and mesenchymal) derive a comparably greater benefit from treatment that includes bevacizumab. Validation of our findings in an independent cohort could enable the use of bevacizumab for those patients most likely to benefit, thereby reducing side effects and healthcare cost.
Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.