Internet of Things (IoT) is leading to the pervasive availability of streaming data about the physical world, coupled with edge computing infrastructure deployed as part of smart cities and 5G rollout. These constrained, less reliable but cheap resources are complemented by fog resources that offer federated management and accelerated computing, and pay-as-you-go cloud resources. There is a lack of intuitive means to deploy application pipelines to consume such diverse streams, and to execute them reliably on edge and fog resources. We propose an innovative application model to declaratively specify queries to match streams of micro-batch data from stream sources and trigger the distributed execution of data pipelines. We also design a resilient scheduling strategy using advanced reservation on reliable fogs to guarantee dataflow completion within a deadline while minimizing the execution cost. Our detailed experiments on over 100 virtual IoT resources and for ≈ 10k task executions, with comparison against baseline scheduling strategies, illustrates the cost-effectiveness, resilience and scalability of our framework.
Internet of Things (IoT) is leading to the pervasive availability of streaming data about the physical world, coupled with edge computing infrastructure deployed as part of smart cities and 5G rollout. These constrained, less reliable but cheap resources are complemented by fog resources that offer federated management and accelerated computing, and pay-as-you-go cloud resources. There is a lack of intuitive means to deploy application pipelines to consume such diverse streams, and to execute them reliably on edge and fog resources. We propose an innovative application model to declaratively specify queries to match streams of micro-batch data from stream sources and trigger the distributed execution of data pipelines. We also design a resilient scheduling strategy using advanced reservation on reliable fogs to guarantee dataflow completion within a deadline while minimizing the execution cost. Our detailed experiments on over 100 virtual IoT resources and for ≈ 10k task executions, with comparison against baseline scheduling strategies, illustrates the cost-effectiveness, resilience and scalability of our framework.473 2022 22nd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.