Structured light plethysmography (SLP) is a light‐based, noncontact technique that measures tidal breathing by monitoring displacements of the thoracoabdominal (TA) wall. We used SLP to measure tidal breathing parameters and their within‐subject variability (v) in 30 children aged 7–16 years with asthma and abnormal spirometry (forced expiratory volume in 1 sec [FEV1] <80% predicted) during a routine clinic appointment. As part of standard care, the reversibility of airway obstruction was assessed by repeating spirometry after administration of an inhaled bronchodilator. In this study, SLP was performed before and after bronchodilator administration, and also once in 41 age‐matched controls. In the asthma group, there was a significant increase in spirometry‐assessed mean FEV1 after administration of bronchodilator. Of all measured tidal breathing parameters, the most informative was the inspiratory to expiratory TA displacement ratio (IE50SLP, calculated as TIF50SLP/TEF50SLP, where TIF50SLP is tidal inspiratory TA displacement rate at 50% of inspiratory displacement and TEF50SLP is tidal expiratory TA displacement rate at 50% of expiratory displacement). Median (m) IE50SLP and its variability (vIE50SLP) were both higher in children with asthma (prebronchodilator) compared with healthy children (mIE50SLP: 1.53 vs. 1.22, P < 0.001; vIE50SLP: 0.63 vs. 0.47, P < 0.001). After administration of bronchodilators to the asthma group, mIE50SLP decreased from 1.53 to 1.45 (P = 0.01) and vIE50SLP decreased from 0.63 to 0.60 (P = 0.04). SLP‐measured tidal breathing parameters could differentiate between children with and without asthma and indicate a response to bronchodilator.
PurposeDifferences in tidal breathing patterns have been reported between patients with chronic obstructive pulmonary disease (COPD) and healthy individuals using traditional measurement techniques. This feasibility study examined whether structured light plethysmography (SLP) – a noncontact, light-based technique – could also detect differences in tidal breathing patterns between patients with COPD and healthy subjects.Patients and methodsA 5 min period of tidal (quiet) breathing was recorded in each patient with COPD (n=31) and each healthy subject (n=31), matched for age, body mass index, and sex. For every participant, the median and interquartile range (IQR; denoting within-subject variability) of 12 tidal breathing parameters were calculated. Individual data were then combined by cohort and summarized by its median and IQR.ResultsAfter correction for multiple comparisons, inspiratory time (median tI) and its variability (IQR of tI) were lower in patients with COPD (p<0.001 and p<0.01, respectively) as were ratios derived from tI (tI/tE and tI/tTot, both p<0.01) and their variability (p<0.01 and p<0.05, respectively). IE50SLP (the ratio of inspiratory to expiratory flow at 50% tidal volume calculated from the SLP signal) was higher (p<0.001) in COPD while SLP-derived time to reach peak tidal expiratory flow over expiratory time (median tPTEFSLP/tE) was shorter (p<0.01) and considerably less variable (p<0.001). Thoraco–abdominal asynchrony was increased (p<0.05) in COPD.ConclusionThese early observations suggest that, like traditional techniques, SLP is able to detect different breathing patterns in COPD patients compared with subjects with no respiratory disease. This provides support for further investigation into the potential uses of SLP in assessing clinical conditions and interventions.
Structured light plethysmography (SLP) is a noncontact, noninvasive, respiratory measurement technique, which uses a structured pattern of light and two cameras to track displacement of the thoraco–abdominal wall during tidal breathing. The primary objective of this study was to examine agreement between tidal breathing parameters measured simultaneously for 45 sec using pneumotachography and SLP in a group of 20 participants with a range of respiratory patterns (“primary cohort”). To examine repeatability of the agreement, an additional 21 healthy subjects (“repeatability cohort”) were measured twice during resting breathing and once during increased respiratory rate (RR). Breath‐by‐breath and averaged RR, inspiratory time (tI), expiratory time (tE), total breath time (tTot), tI/tE, tI/tTot, and IE50 (inspiratory to expiratory flow measured at 50% of tidal volume) were calculated. Bland–Altman plots were used to assess the agreement. In the primary cohort, breath‐by‐breath agreement for RR was ±1.44 breaths per minute (brpm). tI, tE, and tTot agreed to ±0.22, ±0.29, and ±0.32 sec, respectively, and tI/tE, tI/tTot, and IE50/IE50SLP to ±0.16, ±0.05, and ±0.55, respectively. When averaged, agreement for RR was ±0.19 brpm. tI, tE, and tTot were within ±0.16, ±0.16, and ±0.07 sec, respectively, and tI/tE, tI/tTot, and IE50 were within ±0.09, ±0.03, and ±0.25, respectively. A comparison of resting breathing demonstrated that breath‐by‐breath and averaged agreements for all seven parameters were repeatable (P > 0.05). With increased RR, agreement improved for tI, tE, and tTot (P ≤ 0.01), did not differ for tI/tE, tI/tTot, and IE50 (P > 0.05) and reduced for breath‐by‐breath (P < 0.05) but not averaged RR (P > 0.05).
Measurement of lung function can be difficult in young children. Structured light plethysmography (SLP) is a novel, noncontact method of measuring tidal breathing that monitors displacement of the thoraco–abdominal wall. SLP was used to compare breathing in children recovering from an acute exacerbation of asthma/wheeze and an age‐matched cohort of controls. Children aged 2–12 years with acute asthma/wheeze (n = 39) underwent two 5‐min SLP assessments, one before bronchodilator treatment and one after. SLP was performed once in controls (n = 54). Nonparametric comparisons of patients to healthy children and of pre‐bronchodilator to post‐bronchodilator were made for all children, and also stratified by age group (2–5 vs. 6–12 years old). In the asthma/wheeze group, IE50SLP (inspiratory to expiratory flow ratio) was higher (median 1.47 vs. 1.31; P = 0.002), thoraco–abdominal asynchrony (TAA) and left–right asynchrony were greater (both P < 0.001), and respiratory rate was faster (P < 0.001) than in controls. All other timing indices were shorter and displayed reduced variability (all P < 0.001). Variability in time to peak inspiratory flow was also reduced (P < 0.001). Younger children showed a greater effect than older children for TAA (interaction P < 0.05). After bronchodilator treatment, the overall cohort showed a reduction in within‐subject variability in time to peak expiratory flow only (P < 0.001). Younger children exhibited a reduction in relative contribution of the thorax, TAA, and variability in TAA (interaction P < 0.05). SLP can be successfully performed in young children. The potential of SLP to monitor diseases such as asthma in children is worthy of further investigation. ClinicalTrials.gov identifier: NCT02543333.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.