This study was aimed at investigating a floating solar photovoltaic (FPV) system by numerical and experimental simulations under wave and wind loads to analyze the motion characteristics of the platform, the tension of the mooring line, and the pressure and uplift coefficient of panels at 2.5 m/5 m water depth conditions. The floating platform was installed with four rows of solar panels, each row with five panels, attached with four catenary types of mooring lines at the corner of the platform. The numerical model was based on ANSYS AQWA and ANSYS FLUENT (ANSYS Inc., Canonsburg, PA, USA). The experiment model was a scaled FPV platform with four rows of panels scaled in the 1:4 scale ratio. The results obtained from the experiment and numerical simulation achieved a good agreement. The results show that under normal sea conditions, the FPV system may resonate in a high frequency of wave condition, and a larger lift force occurred at the windward surface. Under extreme sea conditions, the pitch motion of the floating platform changed about ±6° without overturning; however, the wind will cause a large drift of the floating platform and the vortex area formed, which will cause damage to the solar panel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.