The aggregates of asphaltene and resin molecules play an important role in stabilizing heavy crude oil. Although many experiments are applied to investigate the complex aggregating structure of asphaltene and resin molecules in heavy crude oil, those microstructure and properties are still not clear at the molecular level. As another auxiliary tool, molecular dynamics (MD) simulation can be used to simulate the behavior of asphaltene and resin in the heavy oil droplet or emulsified oil droplet. The simulation results showed the following: (i) Asphaltene and resin molecules can form a netlike structure in heavy oil through face-to-face or edge-to-face stacking interaction, and the aggregating structure is considered to be the main reason that heavy crude oil has high viscosity. (ii) When surfactant molecules were added to the heavy oil phase, the asphaltene molecules moved to the center of emulsified oil droplet from the oil/water interface. The adsorption of surfactant molecules at the interface resulted in an increase in the hydrophilic surface area of the oil droplet. We think that the changed hydrophilicity of emulsified oil droplet is the key to the viscosity reduction of heavy oil. (iii) The steered MD simulation can prove that the interaction among asphaltene and resin molecules becomes fragile in emulsified heavy oil droplet, and it indicates that the added surfactant molecules are beneficial to the viscosity reduction in crude oil.
Thermosensitive hydrogels, having unique sol–gel transition properties, have recently received special research attention. These hydrogels exhibit a phase transition near body temperature. This feature is the key to their applications in human medicine. In addition, hydrogels can quickly gel at the application site with simple temperature stimulation and without additional organic solvents, cross-linking agents, or external equipment, and the loaded drugs can be retained locally to improve the local drug concentration and avoid unexpected toxicity or side effects caused by systemic administration. All of these features have led to thermosensitive hydrogels being some of the most promising and practical drug delivery systems. In this paper, we review thermosensitive hydrogel materials with biomedical application potential, including natural and synthetic materials. We describe their structural characteristics and gelation mechanism and briefly summarize the mechanism of drug release from thermosensitive hydrogels. Our focus in this review was to summarize the application of thermosensitive hydrogels in disease treatment, including the postoperative recurrence of tumors, the delivery of vaccines, the prevention of postoperative adhesions, the treatment of nervous system diseases via nasal brain targeting, wound healing, and osteoarthritis treatment.
With the cationic transference number close to unity, single-ion conducting polymer electrolytes (SICPEs) are recognized as an advanced electrolyte system with improved energy efficiency for battery application. The relatively low ionic conductivity for most of the SICPEs in comparison with liquid electrolytes remains the major “bottleneck” for their practical applications. Polyethylene oxide (PEO) has been recognized as a benchmark for solid polymer electrolytes due to its high salt solubility and reasonable ionic conductivity. PEO has two advantages: (i) the polar ether groups coordinate well with lithium ions (Li+) providing good dissociation from anions, and (ii) the low T g provides fast segmental dynamics at ambient temperature and assists rapid charge transport. These properties lead to active use of PEO as neutral plasticizing units in SICPEs. Herein, we present a detailed comparison of new SICPEs copolymerized with PEO units vs SICPEs copolymerized with other types of neutral units possessing either flexible or polar structures. The presented analysis revealed that the polarity of side chains has a limited influence on ion dissociation for copolymer-type SICPEs. The Li+-ion dissociation seems to be controlled by the charge delocalization on the polymerized anion. With good miscibility between plasticizing neutral units and ionic conductive units, the ambient ionic conductivity of synthesized SICPEs is still mainly controlled by the T g of the copolymer. This work sheds light on the dominating role of PEO in SICPE systems and provides helpful guidance for designing polymer electrolytes with new functionalities and structures. Furthermore, based on the presented results, we propose that designing polyanions with a highly delocalized charge may be another promising route for achieving sufficient lithium ionic conductivity in solvent-free SICPEs.
The strategies for achieving a high cationic transport polymer electrolyte (HTPE) have mostly focused on developing single-ion conducting polymer electrolytes, which is far from being practical due to sluggish ion transport. Herein, we present an unprecedented approach on designing an HTPE via in situ copolymerization of regular ionic conducting and single-ion conducting monomers in the presence of a lithium salt. The HTPE, i.e., poly(VEC10-r-LiSTFSI), exhibits a combination of impressive properties, including high cationic transport number (0.73), high ionic conductivity (1.60 mS cm–1), tolerance of high current density (10 mA cm–2), and high anodic stability (5 V). A lithium-metal battery constructed with the developed HTPE retains 70% capacity after 1200 cycles at 1 C, and it also operates in a wide temperature range and with a high mass loading of the cathode. Advanced characterizations and computations reveal that the high t Li+ and high ionic conductivity effectively suppress Li0-dendrite growth by circumventing concentration polarizations that plague most polymer electrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.