The objective of this study was to investigate the potential of water soluble chitosan as a carrier in the preparation of protein-loaded nanoparticles. Nanoparticles were prepared by ionotropic gelation of water-soluble chitosan (WSC) with sodium tripolyphosphate (TPP). Bovine serum albumin (BSA) was applied as a model drug. The size and morphology of the nanoparticles were investigated as a function of the preparation conditions. The particles were spherical in shape and had a smooth surface. The size range of the nanoparticles was between 100 and 400 nm. Result of the in vitro studies showed that the WSC nanoparticles enhance and prolong the intestinal absorption of BSA. These results also indicated that WSC nanoparticles were a potential protein delivery system.
The methods for determination of chitosan content recommended in the Chinese Pharmacopoeia and the European Pharmacopoeia are not applicable for evaluation of the extent of deacetylation (deacetylation degree, DD) in chitooligosaccharides (COS). This study explores two different methods for assessment of DD in COS having relatively high and low molecular weights: an acid-base titration with bromocresol green indicator and a first order derivative UV spectrophotometric method for assessment of DD in COS. The accuracy of both methods as a function of molecular weight was also investigated and compared to results obtained using 1H NMR spectroscopy. Our study demonstrates two simple, fast, widely adaptable, highly precise, accurate, and inexpensive methods for the effective determination of DD in COS, which have the potential for widespread commercial applications in developing country.
Most organic dyes dissipate their excitation energy in the aggregated state because of "aggregation caused quenching" effect, deteriorating their application in optoelectronic devices. To prevent "aggregation caused quenching" effect, we incorporate a dye-based fluorophore into a porous organic polymer skeleton because porosity would breed the spatial isolation of fluorophores to maintain its emission. Tuning the fraction of fluorophores in the skeleton of FL-SNW-DPPs would range the emission color covering from red to blue in both solid-state and suspension. More importantly, the combination of fluorescence and porosity of FL-SNW-DPPs would provide more space to transduce the molecular interaction between adsorbed analytes and fluorophores to the detectable changes in light emission, leading to the fluorescence-off or fluorescence-on detection of electron-deficient or electron-rich analytes.
Purpose: This study determined the effects of chitosan (CTS) and water-soluble chitosan (WSC) microparticles (MPs) and nanoparticles (NPs) in rats with high-fat diet-induced obesity. Methods: The rats were randomly separated into eight groups: a normal diet group (the blank control), a high-fat emulsion group (the negative control), CTS and WSC control groups, CTS-MP and WSC-MP groups, and CTS-NP and WSC-NP groups. All groups (except the blank control group) were fed the high-fat diet for 4 weeks to establish the obesity model. Different samples were administered orally once daily to the treatment groups for 4 weeks. Results: A significantly lower weight gain was observed in the WSC-MP and WSC-NP groups, as well as in the CTS-MP and CTS-NP groups, compared with rats given a normal diet and a high-fat diet (P , 0.05). The WSC-MP rats had the least weight gain among all the groups. The food intake in the eight groups had the same trend as weight gain. CTS and WSC MPs and NPs significantly reduced the final amounts of epididymal and perirenal white adipose tissue. Liver weight was reduced in the CTS-MP group compared to rats fed a high-fat diet. Serum total cholesterol and low-density lipoprotein cholesterol were significantly reduced in all treatment groups, with the WSC-MP and CTS-MP groups showing a more significant reduction than the other groups. Triacylglycerol levels were significantly reduced in the WSC-NP group compared to the high-fat group. The mortality rates of CTS-MP, CTS-NP, WSC-MP, and WSC-NP groups were 30%, 30%, 55%, and 65%, respectively. The median lethal dose for the WSC-MP and WSC-NP groups were 4080 mg/kg and 2370 mg/kg, respectively. Conclusion: These results indicate that CTS and WSC MPs and NPs have greater effects than commercially available CTS and WSC, and can be used as potential antiobesity agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.