This study uses kernel k-means cluster analysis to identify medical staffs with high burnout. The data collected in October to November 2014 are from the emotional exhaustion dimension of the Chinese version of Safety Attitudes Questionnaire in a regional teaching hospital in Taiwan. The number of effective questionnaires including the entire staffs such as physicians, nurses, technicians, pharmacists, medical administrators, and respiratory therapists is 680. The results show that 8 clusters are generated by kernel k-means method. Employees in clusters 1, 4, and 5 are relatively in good conditions, whereas employees in clusters 2, 3, 6, 7, and 8 need to be closely monitored from time to time because they have relatively higher degree of burnout. When employees with higher degree of burnout are identified, the hospital management can take actions to improve the resilience, reduce the potential medical errors, and, eventually, enhance the patient safety. This study also suggests that the hospital management needs to keep track of medical staffs’ fatigue conditions and provide timely assistance for burnout recovery through employee assistance programs, mindfulness-based stress reduction programs, positivity currency buildup, and forming appreciative inquiry groups.
Oil is an important energy commodity. The difficulties of forecasting oil prices stem from the nonlinearity and non-stationarity of their dynamics. However, the oil prices are closely correlated with global financial markets and economic conditions, which provides us with sufficient information to predict them. Traditional models are linear and parametric, and are not very effective in predicting oil prices. To address these problems, this study developed a new strategy. Deep (or hierarchical) multiple kernel learning (DMKL) was used to predict the oil price time series. Traditional methods from statistics and machine learning usually involve shallow models; however, they are unable to fully represent complex, compositional, and hierarchical data features. This explains why traditional methods fail to track oil price dynamics. This study aimed to solve this problem by combining deep learning and multiple kernel machines using information from oil, gold, and currency markets. DMKL is good at exploiting multiple information sources. It can effectively identify the relevant information and simultaneously select an apposite data representation. The kernels of DMKL were embedded in a directed acyclic graph (DAG), which is a deep model and efficient at representing complex and compositional data features. This provided a solid foundation for extracting the key features of oil price dynamics. By using real data for empirical testing, our new system robustly outperformed traditional models and significantly reduced the forecasting errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.