In the past decade, exotic hadrons with charm and bottom flavors have been extensively studied both in experiments and in theories. In this review, we provide topical discussions by selecting $X,Y,Z$ particles, to which Belle has made important contributions. These are $X(3872)$, $Y(4260)$, $Z_c(4430)^+$, $Z_c(3900)^+$, $Z_{b}(10610)^+$, and $Z_{b}(10650)^+$. Based on the current experimental observations, we discuss these states with emphasis on the hadronic molecule whose dynamics is governed by chiral symmetry and heavy-quark symmetry of QCD. We also mention briefly various interpretations and some theoretical predictions for the as yet undiscovered exotic hadrons.
Dense quantum chromodynamic matter accommodates various kind of topological solitons such as vortices, domain walls, monopoles, kinks, boojums and so on. In this review, we discuss various properties of topological solitons in dense quantum chromodynamics (QCD) and their phenomenological implications. A particular emphasis is placed on the topological solitons in the color-flavor-locked (CFL) phase, which exhibits both superfluidity and superconductivity. The properties of topological solitons are discussed in terms of effective field theories such as the Ginzburg-Landau theory, the chiral Lagrangian, or the Bogoliubov-de Gennes equation. The most fundamental string-like topological excitations in the CFL phase are the non-Abelian vortices, which are 1/3 quantized superfluid vortices and color magnetic flux tubes. These vortices are created at a phase transition by the Kibble-Zurek mechanism or when the CFL phase is realized in compact stars, which rotate rapidly. The interaction between vortices is found to be repulsive and consequently a vortex lattice is formed in rotating CFL matter. Bosonic and fermionic zero-energy modes are trapped in the core of a non-Abelian vortex and propagate along it as gapless excitations. The former consists of translational zero modes (a Kelvin mode) with a quadratic dispersion and CP 2 Nambu-Goldstone gapless modes with a linear dispersion, associated with the CFL symmetry spontaneously broken in the core of a vortex, while the latter is Majorana fermion zero modes belonging to the triplet of the symmetry remaining in the core of a vortex. The low-energy effective theory of the bosonic zero modes is constructed as a non-relativistic free complex scalar field and a relativistic CP 2 model in 1+1 dimensions. The effects of strange quark mass, electromagnetic interactions and non-perturbative quantum corrections are taken into account in the CP 2 effective theory. Various topological objects associated with non-Abelian vortices are studied; colorful boojums at the CFL interface, the quantum color magnetic monopole confined by vortices, which supports the notion of quark-hadron duality, and Yang-Mills instantons inside a non-Abelian vortex as lumps are discussed. The interactions between a non-Abelian vortex and quasi-particles such as phonons, gluons, mesons, and photons are studied. As a consequence of the interaction with photons, a vortex lattice behaves as a cosmic polarizer. As a remarkable consequence of Majorana fermion zero modes, non-Abelian vortices are shown to behave as a novel kind of non-Abelian anyon. In the order parameters of chiral symmetry breaking, we discuss fractional and integer axial domain walls, Abelian and non-Abelian axial vortices, axial wall-vortex composites, and Skyrmions.
We propose stable exotic nuclei bound with $\bar{D}$ and $B$ mesons with respecting heavy quark symmetry. We indicate that an approximate degeneracy of $\bar{D}$($B$) and $\bar{D}^{*}$($B^{*}$) mesons plays an important role, and discuss the stability of $\bar{D}N$ and $BN$ bound states. We find the binding energies 1.4 MeV and 9.4 MeV for each state in the $J^{P}=1/2^{-}$ with I=0 channel. We discuss also possible existence of exotic nuclei $\bar{D}NN$ and $BNN$
This writeup is a compilation of the predictions for the forthcoming Heavy Ion Program at the Large Hadron Collider, as presented at the CERN Theory Institute ‘Heavy Ion Collisions at the LHC—Last Call for Predictions’, held from 14th May to 10th June 2007.
We study heavy baryons with an exotic flavor quantum number formed by a heavy meson and a nucleon ( " DN and BN) through a long range one pion exchange interaction. The bound state found previously in the ðI; J P Þ ¼ ð0; 1=2 À Þ channel survives when short range interaction is included. In addition, we find a resonant state with ðI; J P Þ ¼ ð0; 3=2 À Þ as a Feshbach resonance predominated by a heavy vector meson and a nucleon ( " D Ã N and B Ã N). We find that these exotic states exist for the charm and heavier flavor region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.