It is well recognized that structures designed by current codes undergo large inelastic deformations during major earthquakes. However, lateral force distributions given in the seismic design codes are typically based on results of elastic-response studies. In this paper, lateral force distributions used in the current seismic codes are reviewed and the results obtained from nonlinear dynamic analyses of a number of example structures are presented and discussed. It is concluded that code lateral force distributions do not represent the maximum force distributions that may be induced during nonlinear response, which may lead to inaccurate predictions of deformation and force demands, causing structures to behave in a rather unpredictable and undesirable manner. A new lateral force distribution based on study of inelastic behavior is developed by using relative distribution of maximum story shears of the example structures subjected to a wide variety of earthquake ground motions. The results show that the suggested lateral force distribution, especially for the types of framed structures investigated in this study, is more rational and gives a much better prediction of inelastic seismic demands at global as well as at element levels.
A series of eight full-scale reinforced concrete column tests was recently carried out at the NEES (Network for Earthquake Engineering Simulation) Multi-Axial Subassemblage Testing (MAST) site at the University of Minnesota as part of a National Science Foundation (NSF) NEES research program. The tests were conducted to address the shortcomings in the available database of reinforced concrete (RC) columns tested with large drift ratios under monotonic and cyclic loading protocols. The specimens were designed based on ACI 318-11 and featured two different cross-sectional dimensions, both larger than nearly all of the columns tested previously. They were subjected to several large displacement loading protocols, including a monotonic and a cyclic biaxial loading protocol. Also, to investigate the effectiveness of novel materials, one specimen was constructed with ultra-high-performance fiber-reinforced concrete (UHP-FRC). This paper presents a description of and potential uses for the data set that is made accessible via a digital object identifier (DOI) (data set DOIs: 10.4231/D33T9D65T, 10.4231/D3028PD2G, 10.4231/D3V97ZR8Z, 10.4231/D3QN5ZB62, 10.4231/D3KW57J3S, 10.4231/D3G44HQ9B, 10.4231/D3BC3SX4Q, and 10.4231/D36M3340C).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.