Recently, machine learning has been used in every possible field to leverage its amazing power. For a long time, the net-working and distributed computing system is the key infrastructure to provide efficient computational resource for machine learning. Networking itself can also benefit from this promising technology. This article focuses on the application of Machine Learning techniques for Networking (MLN), which can not only help solve the intractable old network questions but also stimulate new network applications. In this article, we summarize the basic workflow to explain how to apply the machine learning technology in the networking domain. Then we provide a selective survey of the latest representative advances with explanations on their design principles and benefits. These advances are divided into several network design objectives and the detailed information of how they perform in each step of MLN workflow is presented. Finally, we shed light on the new opportunities on networking design and community building of this new inter-discipline. Our goal is to provide a broad research guideline on networking with machine learning to help and motivate researchers to develop innovative algorithms, standards and frameworks.Comment: 8 pages, 2 figure
Traffic Engineering (TE) is a basic building block of the Internet. In this paper, we analyze whether modern Machine Learning (ML) methods are ready to be used for TE optimization.We address this open question through a comparative analysis between the state of the art in ML and the state of the art in TE.To this end, we first present a novel distributed system for TE that leverages the latest advancements in ML. Our system implements a novel architecture that combines Multi-Agent Reinforcement Learning (MARL) and Graph Neural Networks (GNN) to minimize network congestion. In our evaluation, we compare our MARL+GNN system with DEFO, a network optimizer based on Constraint Programming that represents the state of the art in TE. Our experimental results show that the proposed MARL+GNN solution achieves equivalent performance to DEFO in a wide variety of network scenarios including three real-world network topologies. At the same time, we show that MARL+GNN can achieve significant reductions in execution time (from the scale of minutes with DEFO to a few seconds with our solution).
The proliferation of emergent network applications (e.g., AR/VR, telesurgery, real-time communications) is increasing the difficulty of managing modern communication networks. These applications typically have stringent requirements (e.g., ultra-low deterministic latency), making it more difficult for network operators to manage their network resources efficiently. In this article, we propose the Digital Twin Network (DTN) as a key enabler for efficient network management in modern networks. We describe the general architecture of the DTN and argue that recent trends in Machine Learning (ML) enable building a DTN that efficiently and accurately mimics real-world networks. In addition, we explore the main ML technologies that enable developing the components of the DTN architecture. Finally, we describe the open challenges that the research community has to address in the upcoming years in order to enable the deployment of the DTN in real-world scenarios.
Network modeling is a fundamental tool in network research, design, and operation. Arguably the most popular method for modeling is Queuing Theory (QT). Its main limitation is that it imposes strong assumptions on the packet arrival process, which typically do not hold in real networks. In the field of Deep Learning, Graph Neural Networks (GNN) have emerged as a new technique to build data-driven models that can learn complex and non-linear behavior. In this paper, we present RouteNet-Erlang, a pioneering GNN architecture designed to model computer networks. RouteNet-Erlang supports complex traffic models, multi-queue scheduling policies, routing policies and can provide accurate estimates in networks not seen in the training phase. We benchmark RouteNet-Erlang against a stateof-the-art QT model, and our results show that it outperforms QT in all the network scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.