Topography and gravity measured by the Mars Global Surveyor have enabled determination of the global crust and upper mantle structure of Mars. The planet displays two distinct crustal zones that do not correlate globally with the geologic dichotomy: a region of crust that thins progressively from south to north and encompasses much of the southern highlands and Tharsis province and a region of approximately uniform crustal thickness that includes the northern lowlands and Arabia Terra. The strength of the lithosphere beneath the ancient southern highlands suggests that the northern hemisphere was a locus of high heat flow early in martian history. The thickness of the elastic lithosphere increases with time of loading in the northern plains and Tharsis. The northern lowlands contain structures interpreted as large buried channels that are consistent with northward transport of water and sediment to the lowlands before the end of northern hemisphere resurfacing.
Abstract. Layered viscosity, temperature-dependent viscosity, and surface plates have an important effect on the scale and morphology of structure in spherical models of mantle convection. We find that long-wavelength structures can be produced either by a layered viscosity with a weak upper mantle or temperature-dependent viscosity even in the absence of surface plates, corroborating earlier studies. However, combining the layered viscosity structure with a temperature-dependent viscosity results in structure with significantly shorter wavelengths. Our models show that the scale of convection is mainly controlled by the surface plates, supporting the previous two-dimensional studies. Our models with surface plates, layered and temperaturedependent viscosity, and internal heating explain mantle structures inferred from seismic tomography. The models show that hot upwellings initiate at the core-mantle boundary (CMB) with linear structures, and as they depart from CMB, the linear upwellings quickly change into quasi-cylindrical plumes that dynamically interact with the ambient mantle and surface plates while ascending through the mantle. A linear upwelling structure is generated again at shallow depths (<200 km) in the vicinity of diverging plate margins because of the surface plates. At shallow depths, cold downwelling sheets form at converging plate margins. The evolution of downwelling sheets depends on the mantle rheology. The temperature-dependent viscosity strengthens the downwelling sheets so that the sheet structure can be maintained throughout the mantle. The tendency for linear upwelling and downwelling structures to break into plume-like structures is stronger at higher Rayleigh numbers. Our models also show that downwellings to first-order control surface plate motions and the locations and horizontal motion of upwellings. Upwellings tend to form at stagnation points predicted solely from the buoyancy forces of downwellings. Temperature-dependent viscosity greatly enhances the ascending velocity of developed upwelling plumes, and this may reduce the influence of global mantle flow on the motion of plumes. Our results can explain the anticorrelation between hotspot distribution and fast seismic wave speed anomalies in the lower mantle and may also have significant implications to the observed stationarity of hotspots.
SUMMARY Gravity Recovery And Climate Experiment (GRACE) satellite observations of secular changes in gravity near Hudson Bay, and geological measurements of relative sea level (RSL) changes over the last 10 000 yr in the same region, are used in a Monte Carlo inversion to infer‐mantle viscosity structure. The GRACE secular change in gravity shows a significant positive anomaly over a broad region (>3000 km) near Hudson Bay with a maximum of ∼2.5 μGal yr−1 slightly west of Hudson Bay. The pattern of this anomaly is remarkably consistent with that predicted for postglacial rebound using the ICE‐5G deglaciation history, strongly suggesting a postglacial rebound origin for the gravity change. We find that the GRACE and RSL data are insensitive to mantle viscosity below 1800 km depth, a conclusion similar to that from previous studies that used only RSL data. For a mantle with homogeneous viscosity, the GRACE and RSL data require a viscosity between 1.4 × 1021 and 2.3 × 1021 Pa s. An inversion for two mantle viscosity layers separated at a depth of 670 km, shows an ensemble of viscosity structures compatible with the data. While the lowest misfit occurs for upper‐ and lower‐mantle viscosities of 5.3 × 1020 and 2.3 × 1021 Pa s, respectively, a weaker upper mantle may be compensated by a stronger lower mantle, such that there exist other models that also provide a reasonable fit to the data. We find that the GRACE and RSL data used in this study cannot resolve more than two layers in the upper 1800 km of the mantle.
Large low-velocity seismic anomalies have been detected in the Earth's lower mantle beneath Africa and the Pacific Ocean that are not easily explained by temperature variations alone. The African anomaly has been interpreted to be a northwest-southeast-trending structure with a sharp-edged linear, ridge-like morphology. The Pacific anomaly, on the other hand, appears to be more rounded in shape. Mantle models with heterogeneous composition have related these structures to dense thermochemical piles or superplumes. It has not been shown, however, that such models can lead to thermochemical structures that satisfy the geometrical constraints, as inferred from seismological observations. Here we present numerical models of thermochemical convection in a three-dimensional spherical geometry using plate velocities inferred for the past 119 million years. We show that Earth's subduction history can lead to thermochemical structures similar in shape to the observed large, lower-mantle velocity anomalies. We find that subduction history tends to focus dense material into a ridge-like pile beneath Africa and a relatively more-rounded pile under the Pacific Ocean, consistent with seismic observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.