In rice production, early growth is often slow in direct‐seeded system. Techniques to overcome this barrier are needed. This study evaluated the effectiveness of Kikuichi—a biofertilizer containing Bacillus pumilus TUAT1 spore—in promoting rice growth in a direct‐sowing system. Oxygen, iron, and molybdenum as coating materials were also evaluated to combine with biofertilizer. The seeds were coated with powdered Kikuichi with polyvinyl alcohol followed by a coating with calcium peroxide (CALPER), molybdenum (Benmoly), and iron powder. Double coating with the biofertilizer and Benmoly promoted plant growth. We applied amounts of Kikuichi equivalent to one, two and a half, and five times the weight of the seeds and found that the growth‐promoting effect was dependent on the amount applied. The best timing of application of the coating, specifically during sprouting, was before the coleoptile emerged. Bacillus pumilus TUAT1 can enhance the growth of rice when it exists in high concentration on the spermosphere by coating with molybdenum, but double coating with neither calcium peroxide nor iron powder contributed to the initial growth of the seeds. Kikuichi coating with Benmoly has positive effects on the rice growth. This coating method is suitable to apply biofertilizer for direct sowing cultivation of rice.
Glutathione (GSH) functions as a major sulfur repository and hence occupies an important position in primary sulfur metabolism. GSH degradation results in sulfur reallocation and is believed to be carried out mainly by c-glutamyl cyclotransferases (GGCT2;1, GGCT2;2, and GGCT2;3), which, however, do not fully explain the rapid GSH turnover. Here, we discovered that c-glutamyl peptidase 1 (GGP1) contributes to GSH degradation through a yeast complementation assay. Recombinant proteins of GGP1, as well as GGP3, showed high degradation activity of GSH, but not of oxidized glutathione (GSSG), in vitro. Notably, the GGP1 transcripts were highly abundant in rosette leaves, in agreement with the ggp1 mutants constantly accumulating more GSH regardless of nutritional conditions. Given the lower energy requirements of the GGP-than the GGCT-mediated pathway, the GGP-mediated pathway could be a more efficient route for GSH degradation than the GGCT-mediated pathway. Therefore, we propose a model wherein cytosolic GSH is degraded chiefly by GGP1 and likely also by GGP3. Another noteworthy fact is that GGPs are known to process GSH conjugates in glucosinolate and camalexin synthesis; indeed, we confirmed that the ggp1 mutant contained higher levels of O-acetyl-L-Ser, a signaling molecule for sulfur starvation, and lower levels of glucosinolates and their degradation products. The predicted structure of GGP1 further provided a rationale for this hypothesis. In conclusion, we suggest that GGP1 and possibly GGP3 play vital roles in both primary and secondary sulfur metabolism.
Phosphorus (P) is abundant in soil and is essential for plant growth and development; however, it is easily rendered insoluble in complexes of different types of phosphates, which may lead to P deficiency. Therefore, increases in the amount of P released from phosphate minerals using microbial inoculants is an important aspect of agriculture. The present study used inorganic phosphate solubilizing bacteria (iPSB) in paddy field soils to develop microbial inoculants. Soils planted with rice were collected from different regions of Japan. Soil P was sequentially fractionated using the Hedley method. iPSB were isolated using selective media supplemented with tricalcium phosphate (Ca-P), aluminum phosphate (Al-P), or iron phosphate (Fe-P). Representative isolates were selected based on the P solubilization index and soil sampling site. Identification was performed using 16S rRNA and rpoB gene sequencing. Effectiveness was screened based on rice cultivar Koshihikari growth supplemented with Ca-P, Al-P, or Fe-P as the sole P source. Despite the relatively homogenous soil pH of paddy field sources, three sets of iPSB were isolated, suggesting the influence of fertilizer management and soil types. Most isolates were categorized as β-Proteobacteria (43%). To the best of our knowledge, this is the first study to describe the genera Pleomorphomonas , Rhodanobacter , and Trinickia as iPSB. Acidovorax sp. JC5, Pseudomonas sp. JC11, Burkholderia sp. JA6 and JA10, Sphingomonas sp. JA11, Mycolicibacterium sp. JF5, and Variovorax sp. JF6 promoted plant growth in rice supplemented with an insoluble P source. The iPSBs obtained may be developed as microbial inoculants for various soil types with different P fixation capacities.
Bacillus pumilus strain TUAT1 is a plant growth-promoting bacterium (PGPB) applied as a biofertilizer, containing its spores, for rice. In this study, we analyzed the short-term effects of biofertilization on plant growth in the nursery and long-term effects on plant vegetative growth, yield, and lodging resistance in paddy fields using animal feed rice (‘Fukuhibiki’ and line LTAT-29 which was recently officially registered as a cultivar ‘Monster Nokodai 1′) and fodder rice (line TAT-26). The effects of the biofertilization were analyzed under two nitrogen treatments and at two transplanting distances in the field. The application of 107 colony forming units (CFU) mL−1 bacterial spore solution to seeds on plant box significantly improved the initial growth of rice. The biofertilizer treatment with this strain at 107 CFU g−1 onto seeds in nursery boxes increased the nitrogen uptake at the early growth of rice in the field, resulting in higher growth at the late vegetative growth stage (e.g., tiller number and plant height). Furthermore, the improvement of growth led to increases of not only yield components such as the total panicle number (TPN) and the number of spikelets in a panicle (NSP) in LTAT-29 but also the straw yield and quality of TAT-26. The lodging resistances of these forage rice plants were also improved due to the increased root development and photosynthesis creating tougher culms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.