In the use of a cloud storage, sharing of data with efficient access control is an important requirement in addition to data security and privacy. Cui et al. (IEEE Trans. on Comp. 2016) proposed key-aggregate searchable encryption (KASE), which allows a data owner to issue an aggregate key that enables a user to search in an authorized subset of encrypted files by generating an encrypted keyword called trapdoor. While the idea of KASE is elegant, to the best of our knowledge, its security has never been discussed formally. In this paper, we discuss the security of KASE formally and propose provably secure schemes. The construction of a secure KASE scheme is non-trivial, and we will show that the KASE scheme of Cui et al. is insecure under our definitions. We first introduce our provably secure scheme, named first construction, with respect to encrypted files and aggregate keys in a single-server setting. In comparison with the scheme of Cui et al., the first construction is secure without increased computational costs. Then, we introduce another provably secure scheme, named main construction, with respect to trapdoors in a twoserver setting. The main construction guarantees the privacy of a search, encrypted files, and aggregate keys. Considering 5,000 encrypted files, the first construction can finish search within three seconds and the main construction can finish search within six seconds.INDEX TERMS Key-Aggregate Searchable Encryption, Searchable Encryption, Data Sharing and Provable Security.
In an effort to control the COVID-19 pandemic, large-scale vaccination is being implemented in various countries using anti-SARS-CoV-2 vaccines based on mRNAs, adenovirus vectors, and inactivated viruses. However, there are concerns regarding adverse effects, such as the induction of fever attributed to mRNA vaccines and pre-existing immunity against adenovirus vectored vaccines or their possible involvement in the development of thrombosis. The induction of antibodies against the adenovirus vector itself constitutes another hindrance, rendering boosting vaccinations ineffective. Additionally, it has been questioned whether inactivated vaccines that predominantly induce humoral immunity are effective against newly arising variants, as some isolated strains were found to be resistant to the serum from COVID-19 recovered patients.
Although the number of vaccinated people is steadily increasing on a global scale, it is still necessary to develop vaccines to address the difficulties and concerns mentioned above. Among the various vaccine modalities, live attenuated vaccines have been considered the most effective, since they closely replicate a natural infection without the burden of the disease. In our attempt to provide an additional option to the repertoire of COVID-19 vaccines, we succeeded in isolating temperature-sensitive strains with unique phenotypes that could serve as seeds for a live attenuated vaccine.
In this review article, we summarize the characteristics of the currently approved SARS-CoV-2 vaccines and discuss their advantages and disadvantages. In particular, we focus on the novel temperature-sensitive variants of SARS-CoV-2 that we have recently isolated, and their potential application as live-attenuated vaccines. Based on a thorough evaluation of the different vaccine modalities, we argue that it is important to optimize usage not only based on efficacy, but also on the phases of the pandemic. Our findings can be used to inform vaccination practices and improve global recovery from the COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.