The indenopyrazole framework was investigated as a new class of HIF-1α inhibitors. Indenopyrazole 2l was found to most strongly inhibit the hypoxia-induced HIF-1α transcriptional activity (IC50 = 0.014 μM) among all of the known compounds having relatively simple structures, unlike manassantins. Indenopyrazole 2l suppressed HIF-1α transcriptional activity without affecting both HIF-1α protein accumulation and HIF-1α/HIF-1β heterodimerization in nuclei under the hypoxic conditions, suggesting that 2l probably affected the transcriptional pathway induced by the HIF-1α/HIF-1β heterodimer.
A series of indenopyrazoles was synthesized from the corresponding indanones and phenyl isothiocyanates in two steps. Among the compounds synthesized, methyl 3-((6-methoxy-1,4-dihydroindeno[1,2-c]pyrazol-3-yl)amino)benzoate 6m (GN39482) was found to possess a promising antiproliferative activity toward human cancer cells without affecting any antimicrobial and antimalarial activities at 100 nM. Both a methoxy group at R(1) position and a methoxycarbonyl group at R(2) position of the anilinoquinazoline framework are essential for the high cell growth inhibition. Both MorphoBase and ChemProteoBase profiling analyses suggested that compound 6m was classified as a tubulin inhibitor. Indeed, compound 6m inhibited the acetylated tubulin accumulation and the microtubule formation and induced G2/M cell cycle arrest in HeLa cells, revealing that a promising antiproliferative activity of compound 6m toward human cancer cells is probably caused by the tubulin polymerization inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.