The opercular/triangular parts of the left inferior frontal gyrus and the left lateral premotor cortex are critical in syntactic processing. We have recently indicated that a glioma in one of these regions is sufficient to cause agrammatic comprehension. In the present study, we aimed to show how normally existing syntax-related networks are functionally reorganized by a lesion. Twenty-one patients with a left frontal glioma preoperatively performed a picture-sentence matching task, and underwent functional magnetic resonance imaging scans in an event-related design. We established two qualitatively different types of agrammatic comprehension, depending on glioma location. Patients with a glioma in the left lateral premotor cortex had a more profound deficit in the comprehension of scrambled sentences than that of active and passive sentences. In contrast, patients with a glioma in the opercular/triangular parts of the left inferior frontal gyrus had a more profound deficit in the comprehension of passive and scrambled sentences than that of active sentences. Moreover, we found dramatic changes in the activation patterns in these two patient groups, which accompanied abnormal overactivity and/or underactivity in the syntax-related regions. Furthermore, by examining functional connectivity in the normal brain, we identified three syntax-related networks among those regions, and anatomically visualized connections within individual networks by using diffusion tensor imaging. The first network consists of the opercular/triangular parts of the left inferior frontal gyrus, left intraparietal sulcus, right frontal regions, presupplementary motor area, and right temporal regions. These regions were overactivated in the patients with a glioma in the left lateral premotor cortex only for correct responses, indicating a cognitive change. The second network consists of the left lateral premotor cortex, left angular gyrus, lingual gyrus, and cerebellar nuclei. These regions were overactivated in the patients with a glioma in the opercular/triangular parts of the left inferior frontal gyrus for both correct and incorrect responses, indicating a neuronal change. The third network consists of the left ventral frontal and posterior temporal regions. These regions were underactivated in the patients with a glioma in the opercular/triangular parts of the left inferior frontal gyrus, indicating another neuronal change. These results demonstrate that agrammatic comprehension is associated with the global reorganization of functionally distinct networks, which indeed reflects a differential change in the relative contribution of these three networks to normal syntax-related functions.
The posterior parietal cortex (PPC) features close anatomical and functional relationships with the prefrontal cortex. However, the necessity of the PPC in executive functions has been questioned. The present study used the stop-signal task to examine response inhibition, an executive function that inhibits prepotent response tendency. The brain activity and resting-state functional connectivity were measured to analyze a parcellation-based network that was aimed at identifying a candidate PPC region essential for response inhibition in humans. The intraparietal sulcus (IPS) was activated during response inhibition and connected with the inferior frontal cortex and the presupplementary motor area, the two frontal regions known to be necessary for response inhibition. Next, transcranial magnetic stimulation (TMS) was used to test the essential role of the IPS region for response inhibition. TMS over the IPS region prolonged the stop-signal reaction time (SSRT), the standard behavioral index used to evaluate stopping performance, when stimulation was applied 30 -0 ms before stopping. On the contrary, stimulation over the temporoparietal junction region, an area activated during response inhibition but lacking connectivity with the two frontal regions, did not show changes in SSRT. These results indicate that the IPS identified using the parcellation-based network plays an essential role in executive functions.
Our goal of this study is to characterize the functions of language areas in most precise terms. Previous neuroimaging studies have reported that more complex sentences elicit larger activations in the left inferior frontal gyrus (L. F3op/F3t), although the most critical factor still remains to be identified. We hypothesize that pseudowords with grammatical particles and morphosyntactic information alone impose a construction of syntactic structures, just like normal sentences, and that “the Degree of Merger” (DoM) in recursively merged sentences parametrically modulates neural activations. Using jabberwocky sentences with distinct constructions, we fitted various parametric models of syntactic, other linguistic, and nonlinguistic factors to activations measured with functional magnetic resonance imaging. We demonstrated that the models of DoM and “DoM+number of Search (searching syntactic features)” were the best to explain activations in the L. F3op/F3t and supramarginal gyrus (L. SMG), respectively. We further introduced letter strings, which had neither lexical associations nor grammatical particles, but retained both matching orders and symbol orders of sentences. By directly contrasting jabberwocky sentences with letter strings, localized activations in L. F3op/F3t and L. SMG were indeed independent of matching orders and symbol orders. Moreover, by using dynamic causal modeling, we found that the model with a inhibitory modulatory effect for the bottom-up connectivity from L. SMG to L. F3op/F3t was the best one. For this best model, the top-down connection from L. F3op/F3t to L. SMG was significantly positive. By using diffusion-tensor imaging, we confirmed that the left dorsal pathway of the superior longitudinal and arcuate fasciculi consistently connected these regions. Lastly, we established that nonlinguistic order-related and error-related factors significantly activated the right (R.) lateral premotor cortex and R. F3op/F3t, respectively. These results indicate that the identified network of L. F3op/F3t and L. SMG subserves the calculation of DoM in recursively merged sentences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.