The blockade of human ether-a-go-go-related gene (hERG) potassium channels is widely regarded as the predominant cause of drug-induced QT prolongation. The correlation analysis between the inhibition of the hERG channel (hERG inhibition) and physicochemical properties was investigated by use of in-house quinolone antibiotics as model compounds. In order to establish a simple prediction model of hERG inhibition, we focused on the comprehensible physicochemical parameters such as lipophilicity (log P) and basicity (pK(a)). At first, the risk associated with increasing log P and pK(a) was examined by statistical analysis. It was demonstrated that the risk associated with increasing log P and pK(a) by one unit, respectively, almost identically increased. Consequently, equal attention should be paid to both parameters on hERG inhibition. Next, a prediction model of hERG inhibition which was represented by log P and pK(a) was investigated. As a result, we built the stepwise discriminant prediction model which took advantage of the risk judgment by zone classification. In conclusion, the impact of log P and pK(a) on hERG inhibition was clarified relatively and quantitatively. The quantitative risk assessment established based on both parameters, was considered to be a practical and useful tool in avoiding hERG inhibition and in the rational drug design for drug discovery, especially in lead optimization. Moreover, we also carried out a trend analysis using a different derivative and demonstrated that both parameters were equally significant for hERG inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.