Rapeseeds contain cruciferin (11S globulin), napin (2S albumin), and oleosin (oil body protein) as major seed proteins. The effects of oil expression and drying conditions on the extraction of these proteins from rapeseed meal were examined. The conditions strongly affected the extraction of oleosin and only weakly affected the extraction of cruciferin and napin. The protein chemical and physicochemical properties of cruciferin, the major protein present, were compared with those of glycinin (soybean 11S globulin) under various conditions. In general, cruciferin exhibited higher surface hydrophobicity, lower thermal stability, and lower and higher solubility at mu= 0.5 and mu = 0.08, respectively, than did glycinin. At the pHs (6.0, 7.6, and 9.0) and ionic strengths (mu= 0.08 and 0.5) examined, the emulsifying ability of cruciferin was worse than that of glycinin, except at mu= 0.08 and pH 7.6. The emulsifying abilities of cruciferin and glycinin did not correlate with thermal stability and surface hydrophobicity. Higher protein concentration, higher heating temperature, higher pH, and lower ionic strength were observed to produce harder gels from cruciferin. Gel hardness partly correlated with the structural stability of cruciferin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.