Widely used as anti-cancer and immunosuppressive agents, thiopurines have narrow therapeutic indices due to frequent toxicities, partly explained by TPMT genetic polymorphisms. Recent studies identified germline NUDT15 variation as another critical determinant of thiopurine intolerance, but the underlying molecular mechanisms and its clinical implications remain unknown. In 270 children enrolled in clinical trials for acute lymphoblastic leukemia in Guatemala, Singapore, and Japan, we identified 4 NUDT15 coding variants (p.Arg139Cys, p.Arg139His, p.Val18Ile, p.Val18_Val19insGlyVal) that resulted in 74.4%–100% loss of nucleotide diphosphatase activity. Loss-of-function NUDT15 diplotypes were consistently associated with thiopurine intolerance across three cohorts (P=0.021, 2.1×10−5, and 0.0054, respectively; meta-analysis P=4.45×10−8, allelic effect size=−11.5). Mechanistically, NUDT15 inactivated thiopurine metabolites and decreased its cytotoxicity in vitro, and patients with defective NUDT15 alleles showed excessive thiopurine active metabolites and toxicity. Taken together, our results indicate that a comprehensive pharmacogenetic model integrating NUDT15 variants may inform personalized thiopurine therapy.
Acute myeloid leukemia (AML) with an FLT3 internal tandem duplication (FLT3-ITD) mutation is an aggressive hematologic malignancy with a grave prognosis. To identify the mutational spectrum associated with relapse, whole-exome sequencing was performed on 13 matched diagnosis, relapse, and remission trios followed by targeted sequencing of 299 genes in 67 FLT3-ITD patients. The FLT3-ITD genome has an average of 13 mutations per sample, similar to other AML subtypes, which is a low mutation rate compared with that in solid tumors. Recurrent mutations occur in genes related to DNA methylation, chromatin, histone methylation, myeloid transcription factors, signaling, adhesion, cohesin complex, and the spliceosome. Their pattern of mutual exclusivity and cooperation among mutated genes suggests that these genes have a strong biological relationship. In addition, we identified mutations in previously unappreciated genes such as MLL3, NSD1, FAT1, FAT4, and IDH3B. Mutations in 9 genes were observed in the relapse-specific phase. DNMT3A mutations are the most stable mutations, and this DNMT3A-transformed clone can be present even in morphologic complete remissions. Of note, all AML matched trio samples shared at least 1 genomic alteration at diagnosis and relapse, suggesting common ancestral clones. Two types of clonal evolution occur at relapse: either the founder clone recurs or a subclone of the founder clone escapes from induction chemotherapy and expands at relapse by acquiring new mutations. Relapse-specific mutations displayed an increase in transversions. Functional assays demonstrated that both MLL3 and FAT1 exert tumor-suppressor activity in the FLT3-ITD subtype. An inhibitor of XPO1 synergized with standard AML induction chemotherapy to inhibit FLT3-ITD growth. This study clearly shows that FLT3-ITD AML requires additional driver genetic alterations in addition to FLT3-ITD alone.
Acute erythroid leukemia (AEL) is a high risk leukemia of poorly understood genetic basis, with controversy regarding diagnosis in the spectrum of myelodysplasia and myeloid leukemia. We compared genomic features of 159 childhood and adult AEL cases to non-AEL myeloid disorders, and defined 5 age-related subgroups with distinct transcriptional profiles: adult, TP53-mutated; NPM1-mutated; KMT2A-mutated/rearranged; adult, DDX41-mutated; and pediatric, NUP98-rearranged. Genomic features influenced outcome, with NPM1 mutations and HOXB9 over-expression associated with favorable prognosis, and TP53, FLT3 or RB1 alterations associated with poor survival. Targetable signaling mutations were present in 45% of cases, and included recurrent mutations of ALK and NTRK1, the latter of which drive erythroid leukemogenesis sensitive to TRK inhibition. This genomic landscape of AEL provides the framework for accurate diagnosis and risk stratification of this disease, and the rationale for testing targeted therapies in this high-risk leukemia.
Our results demonstrate significant progress over previous trials in the region. Three-drug remission-induction therapy combined with MRD-based risk stratification to identify poor responders is an effective strategy for childhood ALL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.