Yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease threatening much of global wheat production. Race-specific resistance (R)-genes are used to control rust diseases, but the rapid emergence of virulent Pst races has prompted the search for a more durable resistance. Here, we report the cloning of Yr15, a broad-spectrum R-gene derived from wild emmer wheat, which encodes a putative kinase-pseudokinase protein, designated as wheat tandem kinase 1, comprising a unique R-gene structure in wheat. The existence of a similar gene architecture in 92 putative proteins across the plant kingdom, including the barley RPG1 and a candidate for Ug8, suggests that they are members of a distinct family of plant proteins, termed here tandem kinase-pseudokinases (TKPs). The presence of kinase-pseudokinase structure in both plant TKPs and the animal Janus kinases sheds light on the molecular evolution of immune responses across these two kingdoms.
SignificanceWheat provides a substantial proportion of the calories and proteins consumed by humans, but further production increases are necessary to feed a growing human population. Reducing yield losses caused by pathogens can contribute to these increases. In this study, we report the identification of Sr13, a gene from pasta wheat that confers resistance to the new virulent races of the stem rust pathogen that appeared in Africa at the beginning of this century. We identified three different resistance forms of Sr13 and developed a diagnostic marker to accelerate their deployment in wheat breeding programs. In addition, Sr13 can be a useful component of transgenic cassettes including multiple resistance genes.
Wheat stem rust, caused by Puccinia graminis Pers. f. sp. tritici (Pgt), is a devastating fungal disease threatening global wheat production. The present paper reports the identification of stem rust resistance gene Sr60, a race-specific gene from diploid wheat Triticum monococcum L. that encodes a protein with two putative kinase domains. This gene, designated as WHEAT TANDEM KINASE 2 (WTK2), confers intermediate levels of resistance to Pgt. WTK2 was identified by map-based cloning and validated by transformation of a c.10-kb genomic sequence including WTK2 into susceptible common wheat variety Fielder (Triticum aestivum L.). Transformation of Fielder with WTK2 was sufficient to confer Pgt resistance. Sr60 transcripts were transiently upregulated 1 d post-inoculation with Pgt, but not in mock-inoculated plants. The upregulation of Sr60 was associated with stable upregulation of several pathogenesis-related genes. The Sr60-resistant haplotype found in T. monococcum was not found in polyploid wheat, suggesting an opportunity to introduce a novel resistance gene. Sr60 was successfully introgressed into hexaploid wheat, and we developed a diagnostic molecular marker to accelerate its deployment and pyramiding with other resistance genes. The cloned Sr60 also can be a useful component of transgenic cassettes including other resistance genes with complementary resistance profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.