The present study determined the mechanical properties and volumetric polymerization shrinkage of different categories of resin composite. Three high viscosity bulk fill resin composites were tested: Tetric EvoCeram Bulk Fill (TB, Ivoclar Vivadent), Filtek Bulk Fill posterior restorative (FB, 3M ESPE), and Sonic Fill (SF, Kerr Corp). Two low-shrinkage resin composites, Kalore (KL, GC Corp) and Filtek LS Posterior (LS, 3M ESPE), were used. Three conventional resin composites, Herculite Ultra (HU, Kerr Corp), Estelite ∑ Quick (EQ, Tokuyama Dental), and Filtek Supreme Ultra (SU, 3M ESPE), were used as comparison materials. Following ISO Specification 4049, six specimens for each resin composite were used to determine flexural strength, elastic modulus, and resilience. Volumetric polymerization shrinkage was determined using a water-filled dilatometer. Data were evaluated using analysis of variance followed by Tukey's honestly significant difference test (α=0.05). The flexural strength of the resin composites ranged from 115.4 to 148.1 MPa, the elastic modulus ranged from 5.6 to 13.4 GPa, and the resilience ranged from 0.70 to 1.0 MJ/m. There were significant differences in flexural properties between the materials but no clear outliers. Volumetric changes as a function of time over a duration of 180 seconds depended on the type of resin composite. However, for all the resin composites, apart from LS, volumetric shrinkage began soon after the start of light irradiation, and a rapid decrease in volume during light irradiation followed by a slower decrease was observed. The low shrinkage resin composites KL and LS showed significantly lower volumetric shrinkage than the other tested materials at the measuring point of 180 seconds. In contrast, the three bulk fill resin composites showed higher volumetric change than the other resin composites. The findings from this study provide clinicians with valuable information regarding the mechanical properties and polymerization kinetics of these categories of current resin composite.
This study determined the influence of curing mode on polymerization behavior and mechanical properties of dual-cured provisional resins. Three dual-cured bisacryl-based provisional resins were used: Tempsmart (TS; GC Corp), Luxatemp Automix Solar (LX; DMG Chemisch Pharmazeutishe Fabrik GmbH), and Integrity Multi·Cure (IG; Dentsply Caulk). A self-cured bisacryl-based provisional resin, Protemp Plus (PP; 3M ESPE) and a conventional poly(methyl methacrylate) (PMMA) provisional resin, Unifast III (UF; GC Corp) were used as controls. The inorganic filler content and coefficients of linear thermal expansion of the test materials were measured. Six specimens of each material were used to determine the flexural strength, elastic modulus, and resilience. The changes in ultrasound velocity during polymerization were measured. The average inorganic filler contents of the provisional resins, apart from UF, ranged from 24.4 to 39.3 wt%. The highest inorganic filler content was determined for LX, whereas TS showed the lowest value among the tested materials. The average coefficients of thermal expansion of the tested provisional resins ranged from 77.3 to 107.7 (×10/°C). TS and IG showed significantly lower thermal expansions than the other tested provisional resins. The mean flexural strengths of the provisional resins ranged from 70.4 to 122.6 MPa, the mean elastic moduli ranged from 1.8 to 3.7 GPa, and the mean resilience of the provisional resins ranged from 1.1 to 2.3 MJ/mm, respectively. Dual-cured provisional resins showed significantly higher flexural strengths than the PMMA resin. However, in all cases, the light-curing mode showed significantly higher flexural strengths than the self-curing mode. In the initial polymerization phase, dual-cured resins in the light-curing mode showed a rapid increase in the speed of sound (V) during light irradiation, followed by a slower increase. Conversely, the dual-cured resins in the self-curing mode showed a slower initial increase, followed by a rapid increase. Although no significant difference in V was observed between 10 and 15 minutes in the light-curing mode of all tested dual-cured resins, a significantly higher V value was obtained at 15 minutes than at 10 minutes in the self-curing modes for LX and IG. Regardless of the curing mode, tested dual-cured provisional resins showed superior mechanical properties than the conventional PMMA provisional resin. However, dual-cured provisional resin flexural properties and polymerization behavior were affected by the curing mode. This study indicated that the light-curing mode might be recommended for all dual-cured provisional resins because of the enhancement of their mechanical properties and reduction of chair time.
By measuring the ultrasonic propagation velocity, it can be concluded that CDR application has an ability to promote bovine enamel remineralization.
This study aimed to evaluate the effect of the adhesive application method on the durability of the enamel bond and the thickness of the adhesive layer. A new-generation two-step universal adhesive system, G2-Bond Universal, and two conventional two-step adhesive systems were utilized. The shear bond strength to bovine enamel was measured after thermal cycling in both etch-and-rinse and self-etch modes. Fifteen specimens were divided into three groups as follows: Group I, wherein a strong air stream was applied over the bonding agent for 5 s; Group II, wherein a gentle air stream was applied over the bonding agent for 5 s; and Group III, which was prepared as in Group II, followed by the application of a second layer of the bonding agent and a gentle air stream for 5 s. The durability of the enamel bond and thickness of the tested adhesives were influenced by the application method in both etching modes. The application method used in Group II appeared to be most suitable in terms of the bonding of the adhesives to the enamel. The new-generation two-step self-etch adhesive, comprising a universal adhesive-derived primer and a hydrophobic bonding agent, showed superior bond performance to the conventional two-step adhesive systems.
SUMMARY Objective: The aim of this study was to determine the flexural properties and surface characteristics of a structural colored resin composite after different finishing and polishing methods, in comparison to those of conventional resin composites. Methods and Materials: A structural color resin composite, Omnichroma (OM, Tokuyama Corp, Chiyoda City, Tokyo, Japan), and two comparison resin composites, Filtek Supreme Ultra (FS, 3M, St Paul, MN, USA) and Tetric EvoCeram (TE, Ivoclar Vivadent, Schaan, Liechtenstein), were used. The flexural properties of the resin composites were determined in accordance with the ISO 4049 specifications. For surface properties, 70 polymerized specimens of each resin composite were prepared and divided into seven groups of 10. Surface roughness (Sa), gloss (GU), and surface free energy (SFE) were investigated after the following finishing and polishing methods. Three groups of specimens were finished with a superfine-grit diamond bur (SFD), and three with a tungsten carbide bur (TCB). After finishing, one of the two remaining groups was polished with a one-step silicone point (CMP), and the other with an aluminum oxide flexible disk (SSD). A group ground with SiC 320-grit was set as a baseline. Results: The average flexural strength ranged from 116.6 to 142.3 MPa in the following order with significant differences between each value: FS > TE > OM. The average E ranged from 6.8 to 13.2 GPa in the following order with significant differences between each value: FS > TE > OM. The average R ranged from 0.77 to 1.01 MJ/mm3 in the following order: OM > FS > TE. The Sa values of the OM groups polished with CMP and SSD were found to be significantly lower than those of the other resin composites, regardless of the finishing method. The GU values appeared to be dependent on the material and the finishing method used. The OM specimens polished with SSD showed significantly higher GU values than those polished with CMP. Most of the resin composites polished with SSD demonstrated significantly higher γS values compared to the other groups. Extremely strong negative correlations between Sa and GU in the combined data from the three resin composites and each resin composite and between Sa and γS in the OM specimens were observed; GU showed a strong positive correlation with γS in the same material. Conclusion: These findings indicate that both flexural and surface properties are material dependent. Furthermore, the different finishing and polishing methods used in this study were observed to affect the Sa, GU, and SFE of the resin composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.