Recently, many research groups have been addressing data-driven approaches for (retro)synthetic reaction prediction and retrosynthetic analysis. Although the performances of the data-driven approach have progressed because of recent advances of machine learning and deep learning techniques, problems such as improving capability of reaction prediction and the black-box problem of neural networks persist for practical use by chemists. To spread data-driven approaches to chemists, we focused on two challenges: improvement of retrosynthetic reaction prediction and interpretability of the prediction. In this paper, we propose an interpretable prediction framework using graph convolutional networks (GCN) for retrosynthetic reaction prediction and integrated gradients (IG) for visualization of contributions to the prediction to address these challenges. As a result, from the viewpoint of balanced accuracies, our model showed better performances than the approach using an extended-connectivity fingerprint. Furthermore, IG-based visualization of the GCN prediction successfully highlighted reaction-related atoms.
In computer-assisted synthesis planning (CASP) programs, providing as many chemical synthetic routes as possible is essential for considering optimal and alternative routes in a chemical reaction network. As the majority of CASP programs have been designed to provide one or a few optimal routes, it is likely that the desired one will not be included. To avoid this, an exact algorithm that lists possible synthetic routes within the chemical reaction network is required, alongside a recommendation of synthetic routes that meet specified criteria based on the chemist's objectives. Herein, we propose a chemical-reaction-network-based synthetic route recommendation framework called "Com-pRet" with a mathematically guaranteed enumeration algorithm. In a preliminary experiment, CompRet was shown to successfully provide alternative routes for a known antihistaminic drug, cetirizine. CompRet is expected to promote desirable enumeration-based chemical synthesis searches and aid the development of an interactive CASP framework for chemists.
Deep learning is developing as an important technology to perform various tasks in cheminformatics. In particular, graph convolutional neural networks (GCNs) have been reported to perform well in many types of prediction tasks related to molecules. Although GCN exhibits considerable potential in various applications, appropriate utilization of this resource for obtaining reasonable and reliable prediction results requires thorough understanding of GCN and programming. To leverage the power of GCN to benefit various users from chemists to cheminformaticians, an open-source GCN tool, kGCN, is introduced. To support the users with various levels of programming skills, kGCN includes three interfaces: a graphical user interface (GUI) employing KNIME for users with limited programming skills such as chemists, as well as command-line and Python library interfaces for users with advanced programming skills such as cheminformaticians. To support the three steps required for building a prediction model, i.e., pre-processing, model tuning, and interpretation of results, kGCN includes functions of typical pre-processing, Bayesian optimization for automatic model tuning, and visualization of the atomic contribution to prediction for interpretation of results. kGCN supports three types of approaches, single-task, multi-task, and multi-modal predictions. The prediction of compound-protein interaction for four matrixmetalloproteases, MMP-3,-9,-12 and-13, in the inhibition assays is performed as a representative case study using kGCN. Additionally, kGCN provides the visualization of atomic contributions to the prediction. Such visualization is useful for the validation of the prediction models and the design of molecules based on the prediction model, realizing "explainable AI" for understanding the factors affecting AI prediction. kGCN is available at https ://githu b.com/clinf o.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.