Deep convolutional neural networks (CNN) have recently been shown to generate promising results for aesthetics assessment. However, the performance of these deep CNN methods is often compromised by the constraint that the neural network only takes the fixed-size input. To accommodate this requirement, input images need to be transformed via cropping, warping, or padding, which often alter image composition, reduce image resolution, or cause image distortion. Thus the aesthetics of the original images is impaired because of potential loss of fine grained details and holistic image layout. However, such fine grained details and holistic image layout is critical for evaluating an image's aesthetics. In this paper, we present an Adaptive Layout-Aware Multi-Patch Convolutional Neural Network (A-Lamp CNN) architecture for photo aesthetic assessment. This novel scheme is able to accept arbitrary sized images, and learn from both fined grained details and holistic image layout simultaneously. To enable training on these hybrid inputs, we extend the method by developing a dedicated double-subnet neural network structure, i.e. a Multi-Patch subnet and a Layout-Aware subnet. We further construct an aggregation layer to effectively combine the hybrid features from these two subnets. Extensive experiments on the largescale aesthetics assessment benchmark (AVA) demonstrate significant performance improvement over the state-of-theart in photo aesthetic assessment.
Unsupervised image translation, which aims in translating two independent sets of images, is challenging in discovering the correct correspondences without paired data. Existing works build upon Generative Adversarial Network (GAN) such that the distribution of the translated images are indistinguishable from the distribution of the target set. However, such set-level constraints cannot learn the instance-level correspondences (e.g. aligned semantic parts in object configuration task). This limitation often results in false positives (e.g. geometric or semantic artifacts), and further leads to mode collapse problem. To address the above issues, we propose a novel framework for instance-level image translation by Deep Attention GAN (DA-GAN). Such a design enables DA-GAN to decompose the task of translating samples from two sets into translating instances in a highly-structured latent space. Specifically, we jointly learn a deep attention encoder, and the instancelevel correspondences could be consequently discovered through attending on the learned instance pairs. Therefore, the constraints could be exploited on both set-level and instance-level. Comparisons against several state-ofthe-arts demonstrate the superiority of our approach, and the broad application capability, e.g, pose morphing, data augmentation, etc., pushes the margin of domain translation problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.