BackgroundAxial disturbances are the most disabling symptoms of Parkinson’s disease (PD). Kinect-based objective measures could extract motion characteristics with high reliability and validity.PurposeThe present research aimed to quantify the therapy–response of axial motor symptoms to daily medication regimen and to explore the correlates of the improvement rate (IR) of axial motor symptoms based on a Kinect camera.Materials and methodsWe enrolled 44 patients with PD and 21 healthy controls. All 65 participants performed the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale part III and the Kinect-based kinematic evaluation to assess arising from a chair, gait, posture, and postural stability before and after medication. Spearman’s correlation analysis and multiple linear regression model were performed to explore the relationships between motor feature IR and clinical data.ResultsAll the features arising from a chair (P = 0.001), stride length (P = 0.001), velocity (P < 0.001), the height of foot lift (P < 0.001), and turning time (P = 0.001) improved significantly after a daily drug regimen in patients with PD. In addition, the anterior trunk flexion (lumbar level) exhibited significant improvement (P = 0.004). The IR of the axial motor symptoms score was significantly correlated with the IRs of kinematic features for gait velocity, stride length, foot lift height, and sitting speed (rs = 0.345, P = 0.022; rs = 0.382, P = 0.010; rs = 0.314, P = 0.038; rs = 0.518, P < 0.001, respectively). A multivariable regression analysis showed that the improvement in axial motor symptoms was associated with the IR of gait velocity only (β = 0.593, 95% CI = 0.023–1.164, P = 0.042).ConclusionAxial symptoms were not completely drug-resistant, and some kinematic features can be improved after the daily medication regimen of patients with PD.
BackgroundDecreased myocardial uptake of 131I-metaiodobenzylguanidine (MIBG) is known to be an important feature to diagnose Parkinson’s disease (PD). However, the diagnosis accuracy of myocardial MIBG scintigraphy alone is often unsatisfying. Recent studies have found that the MIBG uptake of the major salivary glands was reduced in PD patients as well.PurposeTo evaluate the diagnostic value of major salivary gland MIBG scintigraphy in PD, and explore the potential role of myocardial MIBG scintigraphy combined with salivary gland MIBG scintigraphy in distinguishing PD from non-PD (NPD).MethodsThirty-seven subjects were performed with 131I-MIBG scintigraphy. They were classified into the PD group (N = 18) and the NPD group (N = 19), based on clinical diagnostic criteria, DAT PET and 18F-FDG PET imaging findings. Images of salivary glands and myocardium were outlined to calculated the MIBG uptake ratios.ResultsThe combination of left parotid and left submandibular gland early images had a good performance in distinguishing PD from NPD, with sensitivity, specificity, and accuracy of 50.00, 94.74, and 72.37%, respectively. Combining the major salivary gland and myocardial scintigraphy results in the early period showed a good diagnostic value with AUC, sensitivity and specificity of 0.877, 77.78, and 94.74%, respectively. Meanwhile, in the delayed period yield an excellent diagnostic value with AUC, sensitivity and specificity of 0.904, 88.89, and 84.21%, respectively.Conclusion131I-MIBG salivary gland scintigraphy assisted in the diagnosis and differential diagnosis of PD. The combination of major salivary gland and myocardial 131I-MIBG scintigraphy further increased the accuracy of PD diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.