SUMMARY Some plant-based diets lower the cardiometabolic risks and prevalence of hypertension. New evidence implies a role for the transient receptor potential vanilloid 1 (TRPV1) cation channel in the pathogenesis of cardiometabolic diseases. Little is known about impact of chronic TRPV1 activation on the regulation of vascular function and blood pressure. Here we report that chronic TRPV1 activation by dietary capsaicin increases the phosphorylation of protein kinase A (PKA) and eNOS and thus production of nitric oxide (NO) in endothelial cells, which is calcium dependent. TRPV1 activation by capsaicin enhances endothelium-dependent relaxation in wild-type mice, an effect absent in TRPV1-deficient mice. Long-term stimulation of TRPV1 can activate PKA, which contributes to increased eNOS phosphorylation, improves vasorelaxation, and lowers blood pressure in genetically hypertensive rats. We conclude that TRPV1 activation by dietary capsaicin improves endothelial function. TRPV1-mediated increase in NO production may represent a promising target for therapeutic intervention of hypertension.
Brown adipose tissue (BAT) is an energy-expending organ that produces heat. Expansion or activation of BAT prevents obesity and diabetes. Chronic cold exposure enhances thermogenesis in BAT through uncoupling protein 1 (UCP1) activation triggered via a β-adrenergic pathway. Here, we report that the cold-sensing transient receptor potential melastatin 8 (TRPM8) is functionally present in mouse BAT. Challenging brown adipocytes with menthol, a TRPM8 agonist, up-regulates UCP1 expression and requires protein kinase A activation. Upon mimicking long-term cold exposure with chronic dietary menthol application, menthol significantly increased the core temperatures and locomotor activity in wild-type mice; these effects were absent in both TRPM8(-/-) and UCP1(-/-) mice. Dietary obesity and glucose abnormalities were also prevented by menthol treatment. Our results reveal a previously unrecognized role for TRPM8, suggesting that stimulation of this channel mediates BAT thermogenesis, which could constitute a promising way to treat obesity.
Impaired aerobic exercise capacity and skeletal muscle dysfunction are associated with cardiometabolic diseases. Acute administration of capsaicin enhances exercise endurance in rodents, but the long-term effect of dietary capsaicin is unknown. The capsaicin receptor, the transient receptor potential vanilloid 1 (TRPV1) cation channel has been detected in skeletal muscle, the role of which remains unclear. Here we report the function of TRPV1 in cultured C2C12 myocytes and the effect of TRPV1 activation by dietary capsaicin on energy metabolism and exercise endurance of skeletal muscles in mice. In vitro, capsaicin increased cytosolic free calcium and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in C2C12 myotubes through activating TRPV1. In vivo, PGC-1α in skeletal muscle was upregulated by capsaicin-induced TRPV1 activation or genetic overexpression of TRPV1 in mice. TRPV1 activation increased the expression of genes involved in fatty acid oxidation and mitochondrial respiration, promoted mitochondrial biogenesis, increased oxidative fibers, enhanced exercise endurance and prevented high-fat diet-induced metabolic disorders. Importantly, these effects of capsaicin were absent in TRPV1-deficient mice. We conclude that TRPV1 activation by dietary capsaicin improves energy metabolism and exercise endurance by upregulating PGC-1α in skeletal muscles. The present results indicate a novel therapeutic strategy for managing metabolic diseases and improving exercise endurance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.