A facile development of highly efficient Pt-TiO(2) nanostructured films via versatile gas-phase deposition methods is described. The films have a unique one-dimensional (1D) structure of TiO(2) single crystals coated with ultrafine Pt nanoparticles (NPs, 0.5-2 nm) and exhibit extremely high CO(2) photoreduction efficiency with selective formation of methane (the maximum CH(4) yield of 1361 μmol/g-cat/h). The fast electron-transfer rate in TiO(2) single crystals and the efficient electron-hole separation by the Pt NPs were the main reasons attributable for the enhancement, where the size of the Pt NPs and the unique 1D structure of TiO(2) single crystals played an important role.
Optical sensors have proven to be a useful method in identifying explosive devices by recognizing vapors of explosive compounds that become airborne and emanate from the device. To detect high explosive compounds such as TNT, a molecularly imprinted polymer (MIP) sensing mechanism was developed. This mechanism consists of MIP microparticles prepared using methacrylic acid as the functional monomer. The MIP microparticles are then combined with fluorescent quantum dots via a simple cross-linking procedure. The result is a highly robust optical sensing scheme that is capable of functioning in an array of environmental conditions. To study the sensing mechanisms's ability to detect nitroaromatic analytes, the fluorescent-labeled MIP particles were tested for their performance in detecting aqueous 2,4-dinitrotoluene (DNT), a nitroaromatic molecule very similar to TNT, as well as TNT itself. These preliminary data indicate that the system is capable of detecting nitroaromatic compounds in solution with high sensitivity, achieving lower limits of detection of 30.1 and 40.7 microM for DNT and TNT, respectively. The detection mechanism also acted rapidly, with response times as low as 1 min for TNT. Due to the results of this study, it can be concluded that the fluorescent-labeled MIP system is a feasible method for detecting high explosives, with the potential for future use in detecting vapors from explosive devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.