Suppression of the myogenic transcription factor MyoD is required for maintenance of muscle stem cells.
BackgroundHepatocellular carcinoma (HCC) is a heterogeneous disease with various etiological factors, and ranks as the second leading cause of cancer-related mortality worldwide due to multi-focal recurrence. We herein identified three major subtypes of HCC by performing integrative analysis of two omics data sets, and clarified that this classification was closely correlated with clinicopathological factors, immune profiles and recurrence patterns.MethodsIn the test study, 183 tumor specimens surgically resected from HCC patients were collected for unsupervised clustering analysis of gene expression signatures and comparative analysis of gene mutations. These results were validated by using genome, methylome and transcriptome data of 373 HCC patients provided from the Cancer Genome Atlas Network. In addition, omics data were obtained from pairs of primary and recurrent HCC.FindingsComprehensive molecular evaluation of HCC by multi-platform analysis defined three major subtypes: (1) mitogenic and stem cell-like tumors with chromosomal instability; (2) CTNNB1-mutated tumors displaying immune suppression; and (3) metabolic disease-associated tumors, which included an immunogenic subgroup characterized by macrophage infiltration and favorable prognosis. Although genomic and epigenomic analysis explicitly distinguished between HCC with intrahepatic metastasis (IM) and multi-centric HCC (MC), the phenotypic similarity between the primary and recurrent tumors was not correlated to the IM/MC origin, but to the classification. Interpretation: Identification of these HCC subtypes provides further insights into patient stratification as well as presents opportunities for therapeutic development.FundMinistry of Education, Culture, Sports, Science and Technology of Japan (16H02670 and 18K19575), Japan Agency for Medical Research and Development (JP15cm0106064, JP17cm0106518, JP18cm0106540 and JP18fk0210040).
We generated self-induced retinal ganglion cells (RGCs) with functional axons from human induced pluripotent stem cells. After development of the optic vesicle from the induced stem cell embryoid body in three-dimensional culture, conversion to two-dimensional culture, achieved by supplementation with BDNF, resulted in differentiation of RGCs at a rate of nearly 90% as indicated by a marginal subregion of an extruded clump of cells, suggesting the formation of an optic vesicle. Axons extended radially from the margin of the clump. Induced RGCs expressed specific markers, such as Brn3b and Math5, as assessed using by quantitative PCR and immunohistochemistry. The long, prominent axons contained neurofilaments and tau and exhibited anterograde axonal transport and sodium-dependent action potentials. The ability to generate RGCs with functional axons uniformly and at a high rate may contribute to both basic and clinical science, including embryology, neurology, pathognomy, and treatment of various optic nerve diseases that threaten vision.
Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disease caused by mutations in the gene coding for the protein dystrophin. Recent work demonstrates that dystrophin is also found in the vasculature and its absence results in vascular deficiency and abnormal blood flow. This induces a state of ischemia further aggravating the muscular dystrophy pathogenesis. For an effective form of therapy of DMD, both the muscle and the vasculature need to be addressed. To reveal the developmental relationship between muscular dystrophy and vasculature, mdx mice, an animal model for DMD, were crossed with Flt-1 gene knockout mice to create a model with increased vasculature. Flt-1 is a decoy receptor for vascular endothelial growth factor, and therefore both homozygous (Flt-1(-/-)) and heterozygous (Flt-1(+/-)) Flt-1 gene knockout mice display increased endothelial cell proliferation and vascular density during embryogenesis. Here, we show that Flt-1(+/-) and mdx:Flt-1(+/-) adult mice also display a developmentally increased vascular density in skeletal muscle compared with the wild-type and mdx mice, respectively. The mdx:Flt-1(+/-) mice show improved muscle histology compared with the mdx mice with decreased fibrosis, calcification and membrane permeability. Functionally, the mdx:Flt-1(+/-) mice have an increase in muscle blood flow and force production, compared with the mdx mice. Consequently, the mdx:utrophin(-/-):Flt-1(+/-) mice display improved muscle histology and significantly higher survival rates compared with the mdx:utrophin(-/-) mice, which show more severe muscle phenotypes than the mdx mice. These data suggest that increasing the vasculature in DMD may ameliorate the histological and functional phenotypes associated with this disease.
SUMMARY1. In patch-clamp recordings from outer segments of dark-adapted rod photoreceptors, single-channel recordings were obtained from the light-sensitive conductance when divalent cations were omitted from the pipette solution bathing the extracellular face of the recorded patch of membrane.2. Activity of the light-sensitive channel was suppressed by light within the normal response range of the dark-adapted rod. During dim, steady illumination, the rate of opening of the channel fluctuated dramatically, as expected qualitatively from statistical fluctuations in the number of photoisomerizations occurring within the effective collecting area of the recorded patch.3. The light-sensitive channel flickered rapidly in the open state, so that individual events appeared as a burst of openings and closings. The average duration of a burst was 0-78+0-03 ms (mean+ s.E.). The average duration of an individual opening was 0 18 + 0008 ms. The average closed duration within a burst was 0-37 + 0-02 ms.4. Hyperpolarization of the recorded patch had no effect on average burst or open duration, although opening frequency increased slightly (+ 18-6 + 4-9%; n = 13; mean+ S.E.). Average single-channel current increased linearly with hyperpolarization, giving an estimated single-channel conductance of 20-5 + 1F1 pS. By extrapolation of the relation between channel current and hyperpolarization, the dark driving force was estimated to be about 48 mV.5. In addition to reducing the rate of channel events, dim non-saturating light also reduced the average duration of a burst of openings and the average duration of openings within a burst.6. About 50 % of cell-attached patches showed no channel activity in darkness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.