Background To explore the value of the quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) parameters in assessing preoperative extramural venous invasion (EMVI) in rectal cancer. Methods Eighty-two rectal adenocarcinoma patients who had underwent MRI preoperatively were enrolled in this study. The differences in quantitative DCE-MRI and DWI parameters including Krans, Kep and ADC values were analyzed between MR-detected EMVI (mrEMVI)-positive and -negative groups. Multivariate logistic regression analysis was performed to build the combined prediction model for pathologic EMVI (pEMVI) with statistically significant quantitative parameters. The performance of the model for predicting pEMVI was evaluated using receiver operating characteristic (ROC) curve. Results Of the 82 patients, 24 were mrEMVI-positive and 58 were -negative. In the mrEMVI positive group, the Ktrans and Kep values were significantly higher than those in the mrEMVI negative group (P < 0.01), but the ADC values were significantly lower (P < 0.01). A negative correlation was observed between the Ktrans vs ADC values and Kep vs ADC values in patients with rectal cancer. Among the four quantitative parameters, Ktrans and ADC value were independently associated with mrEMVI by multivariate logistic regression analysis. ROC analysis showed that combined prediction model based on quantitative DCE parameters and ADC values had a good prediction efficiency for pEMVI in rectal cancer. Conclusion The quantitative DCE-MRI parameters, Krans, Kep and ADC values play important role in predicting EMVI of rectal cancer, with Ktrans and ADC value being independent predictors of EMVI in rectal cancer.
BACKGROUND Metastatic tumors are the most common malignancies of central nervous system in adults, and the frequent primary lesion is lung cancer. Brain and leptomeningeal metastases are more common in patients with non-small-cell lung cancer harboring epidermal growth factor receptor mutations. However, the coexist of brain metastasis with leptomeningeal metastasis (LM) in isolated gyriform appearance is rare. CASE SUMMARY We herein presented a case of a 76-year-old male with an established diagnosis as lung adenocarcinoma with gyriform-appeared cerebral parenchymal and leptomeningeal metastases, accompanied by mild peripheral edema and avid contrast enhancement on magnetic resonance imaging. Surgical and pathological examinations confirmed the brain and leptomeningeal metastatic lesions in the left frontal cortex, subcortical white matter and local leptomeninges. CONCLUSION This case was unique with respect to the imaging findings of focal gyriform appearance, which might be caused by secondary parenchymal brain metastatic tumors invading into the leptomeninges or coexistence with LM. Radiologists should be aware of this uncommon imaging presentation of tumor metastases to the central nervous system.
Background To explore the value of a multiparametric magnetic resonance imaging (MRI)-based deep learning model for the preoperative prediction of Ki67 expression in prostate cancer (PCa). Materials The data of 229 patients with PCa from two centers were retrospectively analyzed and divided into training, internal validation, and external validation sets. Deep learning features were extracted and selected from each patient’s prostate multiparametric MRI (diffusion-weighted imaging, T2-weighted imaging, and contrast-enhanced T1-weighted imaging sequences) data to establish a deep radiomic signature and construct models for the preoperative prediction of Ki67 expression. Independent predictive risk factors were identified and incorporated into a clinical model, and the clinical and deep learning models were combined to obtain a joint model. The predictive performance of multiple deep-learning models was then evaluated. Results Seven prediction models were constructed: one clinical model, three deep learning models (the DLRS-Resnet, DLRS-Inception, and DLRS-Densenet models), and three joint models (the Nomogram-Resnet, Nomogram-Inception, and Nomogram-Densenet models). The areas under the curve (AUCs) of the clinical model in the testing, internal validation, and external validation sets were 0.794, 0.711, and 0.75, respectively. The AUCs of the deep models and joint models ranged from 0.939 to 0.993. The DeLong test revealed that the predictive performance of the deep learning models and the joint models was superior to that of the clinical model (p < 0.01). The predictive performance of the DLRS-Resnet model was inferior to that of the Nomogram-Resnet model (p < 0.01), whereas the predictive performance of the remaining deep learning models and joint models did not differ significantly. Conclusion The multiple easy-to-use deep learning–based models for predicting Ki67 expression in PCa developed in this study can help physicians obtain more detailed prognostic data before a patient undergoes surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.