The aim of this study was to examine the relationship between emotion dysregulation and the core features of Autism Spectrum Disorder (ASD), which include social/communication deficits, restricted/repetitive behaviors, and sensory abnormalities. An 18-item Emotion Dysregulation Index was developed on the basis of expert ratings of the Child Behavior Checklist. Compared to typically developing controls, children and adolescents with ASD showed more emotion dysregulation and had significantly greater symptom severity on all scales. Within ASD participants, emotion dysregulation was related to all core features of the disorder, but the strongest association was with repetitive behaviors. These findings may facilitate the development of more effective therapeutic strategies targeting emotion dysregulation in order to optimize longterm outcomes for individuals with ASD.
Alkyl esters of long chain fatty acid are called biodiesel. These esters can be obtained from vegetable oils by transesterification with methanol/ethanol. The transesterification can be carried out chemically or enzymatically. In the present work three different lipases (Chromobacterium viscosum, Candida rugosa, and Porcine pancreas) were screened for a transesterification reaction of Jatropha oil in a solvent-free system to produce biodiesel; only lipase from Chromobacterium viscosum was found to give appreciable yield. Immobilization of lipase (Chromobacterium viscosum) on Celite-545 enhanced the biodiesel yield to 71% from 62% yield obtained by using free tuned enzyme preparation with a process time of 8 h at 40 °C. Further addition of water to the free (1%, w v -1 ) and immobilized (0.5%, w v -1 ) enzyme preparations enhanced the yields to 73 and 92%, respectively. Immobilized Chromobacterium viscosum lipase can be used for ethanolysis of oil. It was seen that immobilization of lipases and optimization of transesterification conditions resulted in adequate yield of biodiesel in the case of the enzyme-based process.
BINDING PROTEIN (BiP) is a major chaperone in the endoplasmic reticulum (ER) lumen, and this study shows that BiP binds to the C-terminal tail of the stress sensor/transducer bZIP28, a membrane-associated transcription factor, retaining it in the ER under unstressed conditions. In response to ER stress, BiP dissociates from bZIP28, allowing it to be mobilized from the ER to the Golgi where it is proteolytically processed and released to enter the nucleus. Under unstressed conditions, BiP binds to bZIP28 as it binds to other client proteins, through its substrate binding domain. BiP dissociates from bZIP28 even when bZIP28's exit from the ER or its release from the Golgi is blocked. Both BiP1 and BiP3 bind bZIP28, and overexpression of either BiP detains bZIP28 in the ER under stress conditions. A C-terminally truncated mutant of bZIP28 eliminating most of the lumenal domain does not bind BiP and is not retained in the ER under unstressed conditions. BiP binding sites in the C-terminal tail of bZIP28 were identified in a phage display system. BiP was found to bind to intrinsically disordered regions on bZIP28's lumen-facing tail. Thus, the dissociation of BiP from the C-terminal tail of bZIP28 is a major switch that activates one arm of the unfolded protein response signaling pathway in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.