The performance of a UHV vessel can be improved with a new CERN technology nonevaporable getter (NEG) coating, which is already widely used for accelerator vacuum chambers. Better understanding of the processes involved in NEG film deposition, activation, and poisoning should allow optimization and engineering of the film properties, which are necessary for a particular application. Ti–Zr–V NEG films were created by magnetron sputtering from a single Ti–Zr–V target, and the NEG performance and morphology dependence on deposition pressure, sputtering conditions, and substrate surface roughness have been investigated. It was found that the average grain size of the Ti–Zr–V film was 5–6 nm and was broadly independent of the substrate material and deposition conditions. However, film topography and density were shown to depend very much on the substrate surface roughness and deposition conditions. Rough substrates, high working pressures, and the absence of ion bombardment produced open columnar structures, whereas smooth substrates, ion assistance, and low pressures produced much denser layers. X-ray photoelectron spectroscopy studies have shown that full regeneration occurred at 300 °C but film activation started at temperatures of as low as 160 °C. The CO sticking probability reaches its maximum after activation at 250 °C and is found to be up to 0.3 with a pumping capacity in the range of 0.8–1.2 ML. The samples activated at 160 °C have a reduced pumping speed and capacity by an order of magnitude.
The Mars–van Krevelen mechanism is the foundation for oxide-catalyzed oxidation reactions and relies on spatiotemporally separated redox steps. Herein, we demonstrate the tunability of this separation with peroxide species formed by excessively adsorbed oxygen, thereby modifying the catalytic activity and selectivity of the oxide. Using CuO as an example, we show that a surface layer of peroxide species acts as a promotor to significantly enhance CuO reducibility in favor of H
2
oxidation but conversely as an inhibitor to suppress CuO reduction against CO oxidation. Together with atomistic modeling, we identify that this opposite effect of the peroxide on the two oxidation reactions stems from its modification on coordinately unsaturated sites of the oxide surface. By differentiating the chemical functionality between lattice oxygen and peroxide, these results are closely relevant to a wide range of catalytic oxidation reactions using excessively adsorbed oxygen to activate lattice oxygen and tune the activity and selectivity of redox sites.
The temperature dependence of phase composition and lattice parameters, for TiAl x N thin film coating, are experimentally investigated by in-situ synchrotron radiation X-ray diffraction (SR-XRD), at temperatures between 25°C to 700 °C. Mechanical properties, such as: Young's modulus (E), hardness (H) and plastic deformation index (PDI)-were experimentally determined by nanoindentation, at 25 °C. Crystalline structural analysis, of SR-XRD results, indicates the major phases are TiN and AlN; with Ti 2 O and TiO 2 phases also present above 600 °C. The lattice constants increased with an increase in temperature. Atomic and phase compositions, at 25 °C, were also verified by X-ray photoelectron spectroscopy (XPS). Field emission scanning electron microscopy (FESEM) images display an increase in surface roughness and reduction in grain size, with increasing Aluminium percentage (Al%). Nanoindentation analysis showed a maximum hardness of 25.1 ± 1.5 GPa (sample containing 12% Al), which was subsequently reduced upon addition of more Aluminium. Finite element modelling (FEM), including von Mises stress distribution, indicates lower mechanical integrity, for samples with high Al% content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.